
Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

SQL and Macro 101

University of Iowa SAS Users Group
October 3, 2025

Rebecca Callaway
SAS Education

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Rebecca Callaway, SAS Institute

With a background in Mathematics and Statistics, SAS
Instructor Rebecca Callaway engages with logic, visuals,
and analogies to spark critical thinking since 2000.

Rebecca teaches classes on SAS programming, SQL, SAS
Visual Analytics, SAS Viya, etc. to support users in the
adoption of SAS software.

When not working, Rebecca enjoys spending time outdoors
enjoying the lovely San Diego weather and hanging out with
her husband Ken and their cat Zigmo.

SQL and Macro 101

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Agenda
Nuts & Bolts - PROC SQL Overview

Specifying Columns

Specifying Rows

Summarizing Data

Joining Tables

Introduction to Macro

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Nuts & Bolts - PROC SQL Overview

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Structured Query Language

Structured Query Language (SQL) is a standardized language originally designed as a
relational database query tool.
SQL is currently used in many software products to retrieve and update data.

proc sql;
select Employee_ID

from orion.employee_data
where Salary le 100000;

select Employee_Gender,
avg(Salary)

from orion.employee_data
group by Employee_Gender;

quit;

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

SQL Procedure versus Traditional SAS
The SQL procedure can sometimes reproduce the results of
multiple DATA and procedure steps with a single query.

PROC SQL

DATA Step

PROC SORT PROC PRINT

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Objectives

– Identify key syntax of the SQL procedure.
– List key features of the SQL procedure.
– List key features of the SELECT statement.
– List SQL procedure statements.

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

SELECT Statement

A SELECT statement contains smaller building blocks called clauses.

 Although it can contain multiple clauses, each SELECT statement begins with the
SELECT keyword and ends with a semicolon.

proc sql;
select Employee_ID, Employee_Gender, Salary

from orion.employee_information
where Employee_Gender='F'
order by Salary desc;

quit;

s102d01

clauses

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Viewing the Output
Partial PROC SQL Output

The SAS System

Employee
Employee Annual

Employee ID Gender Salary
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

120260 F $207,885
120719 F $87,420
120661 F $85,495
121144 F $83,505
120798 F $80,755

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

SELECT Statement: Required Clauses

– The SELECT clause specifies the columns and column order.
– The FROM clause specifies the data sources.
– You can query from 1 to 256 tables.

SELECT object-item <, ...object-item>
FROM from-list;

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Specifying Columns

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Objectives

– Explore unfamiliar data.
– Display columns directly from a table.
– Display columns calculated from other columns

in a query.

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Querying All Columns in a Table

s102d04

To print all of a table’s columns in the order in which they were stored,
specify an asterisk in a SELECT clause.

Partial PROC SQL Output

proc sql;
select *

from orion.employee_information;
quit;

The SAS System
Start

Employee ID Date End Date Department
Employee Employee Employee
Annual Employee Birth Employee Termination Manager for

Employee Job Title Salary Gender Date Hire Date Date Employee
ƒƒ

120101 01JUL2007 31DEC9999 Sales Management
Director $163,040 M 18AUG1980 01JUL2007 . 120261

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Business Scenario
Produce a report that contains selected information for all Orion Star employees.

orion.employee_information

Employee_
Employee_ID Gender Salary
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

120101 M 163040
120102 M 108255
120103 M 87975
120104 F 46230
120105 F 27110

PROC SQL

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Querying Specific Columns in a Table
List the columns that you want and the order to display them in the SELECT clause.

proc sql;
select Employee_ID, Employee_Gender,

Salary
from orion.employee_information;

quit;

s102d06

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Viewing the Output
Partial PROC SQL Output

The SAS System

Employee
Employee Annual

Employee ID Gender Salary
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

120101 M $163,040
120102 M $108,255
120103 M $87,975
120104 F $46,230
120105 F $27,110
120106 M $26,960
120107 F $30,475

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Business Scenario

Modify the previous report by creating a new column, Bonus, which contains an
amount equal to 10% of the employee’s salary.

orion.employee_information

PROC SQL

Employee_ID Salary Bonus
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

120101 163040 16304
120102 108255 10825.5
120103 87975 8797.5
120104 46230 4623
120105 27110 2711

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Calculated Columns
Name the new column using the AS keyword.

proc sql;
select Employee_ID, Salary,

Salary*.10 as Bonus
from orion.employee_information;

quit;

s102d07

Partial PROC SQL Output
The SAS System

Employee
Annual

Employee ID Salary Bonus
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

120101 $163,040 16304
120102 $108,255 10825.5
120103 $87,975 8797.5

...

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Specifying Rows

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Objectives

– Select a subset of rows in a query.

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Business Scenario
Management requested a list of employees whose salaries exceed $112,000.

orion.employee_information

PROC SQL

Employee
Annual

Employee ID Employee Job Title Salary
ƒƒ

120101 Director $163,040
120259 Chief Executive Officer $433,800
120260 Chief Marketing Officer $207,885
120261 Chief Sales Officer $243,190
120262 Chief Financial Officer $268,455

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Subsetting with the WHERE Clause

Use a WHERE clause to specify a condition that the data must satisfy before being
selected.

proc sql;
select Employee_ID, Job_Title, Salary

from orion.employee_information
where Salary > 112000;

quit;

s102d14

WHERE sql-expression

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Viewing the Output
PROC SQL Output

The SAS System
Employee
Annual

Employee ID Employee Job Title Salary

ƒƒ
120101 Director $163,040
120259 Chief Executive Officer $433,800
120260 Chief Marketing Officer $207,885
120261 Chief Sales Officer $243,190
120262 Chief Financial Officer $268,455
120659 Director $161,290
121141 Vice President $194,885
121142 Director $156,065

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Business Scenario
Management requested a report that includes only those employees who
receive bonuses less than $3000.

orion.employee_information

PROC SQL

Employee_
Employee_ID Gender Salary Bonus
ƒƒƒ

120105 F 27110 2711
120106 M 26960 2696
120108 F 27660 2766
120109 F 26495 2649.5
120110 M 28615 2861.5

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Subsetting with Calculated Values
First attempt:

Partial SAS Log

s102d15

proc sql;
select Employee_ID, Employee_Gender,

Salary, Salary*.10 as Bonus
from orion.employee_information
where Bonus<3000;

quit;

ERROR: The following columns were not found in the contributing
tables: Bonus.

A WHERE clause is evaluated before the
SELECT clause. Therefore, columns used in the
WHERE clause must exist in the table.

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Subsetting with Calculated Values
An alternate method is to use the CALCULATED keyword in the
WHERE clause.

proc sql;
select Employee_ID, Employee_Gender,

Salary, Salary*.10 as Bonus
from orion.employee_information
where calculated Bonus<3000;

quit;

s102d15

SAS enhancement

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Viewing the Output
Partial PROC SQL Output

The SAS System

Employee
Employee Annual

Employee ID Gender Salary Bonus
ƒƒƒ

120105 F $27,110 2711
120106 M $26,960 2696
120108 F $27,660 2766
120109 F $26,495 2649.5
120110 M $28,615 2861.5
120111 M $26,895 2689.5
120112 F $26,550 2655

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Summarizing Data

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Objectives

– Group data and produce summary statistics for each group.
– Subset a query on summarized values.

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Business Scenario
Management requested a report containing the total annual donations for each
employee.

PROC SQL

Partial Results
orion.employee_donations

Employee Annual
Identifier Donation
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
120736 $45.00
120759 $40.00
120681 $40.00

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Summary Functions: Across a Row

Total each employee’s annual cash donations.

proc sql;
select Employee_ID

label='Employee Identifier',
Qtr1,Qtr2,Qtr3,Qtr4,
sum(Qtr1,Qtr2,Qtr3,Qtr4)

label='Annual Donation'
format=dollar5.

from orion.employee_donations
where Paid_By="Cash or Check"
order by 6 desc;

quit;

s103d06

SUM(col1, …, coln)

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Viewing the Output

Partial PROC SQL Output

Employee Annual
Identifier Qtr1 Qtr2 Qtr3 Qtr4 Donation
ƒƒƒ

120736 25 . . 20 $45
120759 15 20 5 . $40
120681 10 10 5 15 $40
120679 . 20 5 15 $40
120777 5 15 5 15 $40

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Business Scenario
Management requested a report containing the total contributions for all
employees in the first quarter.

PROC SQL

Desired Results
orion.employee_donations

Total
Quarter 1
Donations
ƒƒƒƒƒƒƒƒƒ

1515

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Summary Functions: Summarize a Column

Total employee’s annual cash donations.

proc sql;
select sum(Qtr1)

label=‘Total Quarter 1 Donations’
from orion.employee_donations;

quit;

s103d06

SUM(col1)

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Business Scenario
Produce a report that determines the average salary by gender.

PROC SQL

Desired Results
orion.employee_information

Employee
Gender Average
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
F 37002.88
M 43334.26

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

proc sql;
title "Average Salary by Gender";
select Employee_Gender as Gender,

avg(Salary) as Average
from orion.employee_information
where Employee_Term_Date is missing
group by Employee_Gender;

quit;

Grouping Data
You can use the GROUP BY clause to do the following:
– classify the data into groups based on the values of one or more columns
– calculate statistics for each unique value of the grouping columns

s103d10

GROUP BY group-by-item<,…, group-by-item>

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Viewing the Output

PROC SQL Output

Average Salary by Gender

Employee
Gender Average
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
F 37002.88
M 43334.26

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Joining Tables

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Objectives

– Identify different ways to combine data horizontally from multiple tables.
– Distinguish between inner and outer SQL joins.
– Understand the Cartesian product.

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Exploring the Data

The customers table is representative of a customer dimension table. There would be
additional columns with data about customers including address, age, and so on.
The transactions table is representative of a fact table. There would be columns holding
all the key column data, Product_ID, Employee_ID, and so on.

customers
NameID
Smith 101
Jones 104
Blank 102

transactions
AmountAction ID

$100 Purchase 102
$52 Return 103

$212 Return 105

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Types of Joins

PROC SQL supports two types of joins:
Inner joins return only matching rows.

Outer joins return all matching rows, plus nonmatching rows from one or both tables.

RightLeft Full

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Cartesian Product

A query that lists multiple tables in the FROM clause without a WHERE clause
produces all possible combinations of rows from all tables. This result
is called a Cartesian product.

To understand how SQL processes a join, it is helpful to understand the concept of the
Cartesian product.

proc sql;
select *

from customers, transactions;
quit;

SELECT …
FROM table-name, table-name

<, …,table-name >;

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Building the Cartesian Product
customers

NameID
Smith 101
Jones 104
Blank 102

transactions
AmountAction ID

$100 Purchase 102
$52 Return 103

$212 Return 105

ID Name ID Action Amount
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
101 Smith 102 Purchase $100
101 Smith 103 Return $52
101 Smith 105 Return $212
104 Jones 102 Purchase $100
104 Jones 103 Return $52
104 Jones 105 Return $212
102 Blank 102 Purchase $100
102 Blank 103 Return $52
102 Blank 105 Return $212

Result Set

The Cartesian product
is rarely the desired
result of a query.

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Objectives

– Join two or more tables on matching columns.
– Qualify column names to identify specific columns.
– Use a table alias to simplify the SQL code.

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Report 1: Inner Join

Management has requested a report showing all valid order information.

customers transactions

ID Name Action Amount
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
102 Blank Purchase $100

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Inner Join
Specify the matching criteria in the WHERE clause.

PROC SQL Output

proc sql;
select *

from customers, transactions
where customers.ID=

transactions.ID;
quit;

SELECT object-item<, …object-item>
FROM table-name, … table-name
WHERE join condition

<AND sql-expression>

<other clauses>;

ID Name ID Action Amount
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
102 Blank 102 Purchase $100

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Completed Code for Report 1
To display the ID column only once in the results, qualify the ID column in the SELECT
clause.

ID Name Action Amount
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
102 Blank Purchase $100

select customers.ID, Name, Action, Amount
from customers, transactions
where customers.ID=transactions.ID;

customers
NameID
Smith 101
Jones 104
Blank 102

transactions
AmountAction ID

$100 Purchase 102
$52 Return 103

$212 Return 105

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Abbreviating the Code with a Table Alias

PROC SQL Output

proc sql;
select c.ID, Name, Action, Amount

from customers as c, transactions as t
where c.ID=t.ID;

quit;

ID Name Action Amount
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
102 Blank Purchase $100

s104d04

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Compare SQL Join and DATA Step Merge
DATA Step MergeSQL JoinKey Points

RequiredNot requiredExplicit sorting of data
before join/merge

RequiredNot requiredSame-name columns in
join/merge expressions

RequiredNot requiredEquality in join or merge
expressions

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Introduction to the Macro Facility

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Macro Programming

TEXT

The SAS macro
facility enables you
to write code that

rewrites itself!

SAS Macro
Facility

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Substituting User-Defined Values

title "Trucks by Origin";
proc freq data=sashelp.cars;

where Type="Truck";
table Origin;

run;

title "Average Highway MPG for Trucks";
proc means data=sashelp.cars mean maxdec=1;

where Type="Truck";
var MPG_Highway;
class Origin;

run;

Truck

SUV

Sports

Easily replace
repetitive values.

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Substituting User-Defined Values

%let Type=Truck;
title “&Type by Origin”;
proc freq data=sashelp.cars;

where Type=“&Type”;
table Origin;

run;

title "Average Highway MPG for &Type";
proc means data=sashelp.cars mean maxdec=1;

where Type=“&Type”;
var MPG_Highway;
class Origin;

run;

Truck

SUV

Sports

Create a Macro
Variable to replace
repetitive values.

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Substituting System Values

title "Cars List";
footnote "Created at 10:24 AM on 14SEP2025;
title "Trucks by Origin";
proc freq data=sashelp.cars;

where Type="Truck";
table Origin;

run;

title "Average Highway MPG for Trucks";
proc means data=sashelp.cars mean maxdec=1;

where Type="Truck";
var MPG_Highway;
class Origin;

run;

Automatically
substitute system

values into a program.

How can the
macro language
make your job

easier as a SAS
programmer?

CarsMacro.sas

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Substituting System Values

title "Cars List";
footnote "Created at &systime on &sysdate9;
title "Trucks by Origin";
proc freq data=sashelp.cars;

where Type="Truck";
table Origin;

run;

title "Average Highway MPG for Trucks";
proc means data=sashelp.cars mean maxdec=1;

where Type="Truck";
var MPG_Highway;
class Origin;

run;

Automatically
substitute system

values into a program.

Using the macro
facility will make

your programs
more dynamic and
maintenance-free!

CarsMacro.sas

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Efficiency of Macro-Based Applications

The macro facility processes the
text in a program to automate and
customize the code.

The macro
language won’t

make your code run
faster, but it can

reduce your
development and
maintenance time.

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Handy Links

• SAS 9.4 PROC SQL user’s guide

• Video - Step-by-step PROC SQL

• Go home on time with 5 PROC SQL tips

• Ask The Expert Webinar – Top 5 Handy PROC SQL Tips

• Know thy data: Dictionary tables SAS Global Forum Paper

• SAS YouTube Video - Mastering the WHERE clause in PROG SQL

• SAS YouTube Video - Power of SAS SQL –SAS Global Forum 2021

• SAS YouTube Video - Step by step PROC SQL – SAS Global forum 2020

• “Ask the Expert Webinar - Why choose between SAS data Step & PROC SQL When You Can Have
Both

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Recommended Courses From This Presentation

• SAS® SQL 1: Essentials

• SAS® Macro Language: Essentials

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Thank You

Rebecca Callaway
SAS Institute San Diego

EMAIL Rebecca.Callaway@sas.com
LINKEDIN https://www.linkedin.com/in/rebeccazcallaway/

 Did you
enjoy this
session, Let us
know in the
evaluation

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

2 for 1 Advanced Macro & SQL

University of Iowa SAS User Group
October 3, 2025

Rebecca Z Callaway
SAS Institute Inc

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Rebecca Callaway, SAS Institute

With a background in Mathematics and Statistics, SAS
Instructor Rebecca Callaway engages with logic, visuals,
and analogies to spark critical thinking since 2000.

Rebecca teaches classes on SAS programming, SQL, SAS
Visual Analytics, SAS Viya, etc. to support users in the
adoption of SAS software.

When not working, Rebecca enjoys spending time outdoors
enjoying the lovely San Diego weather and hanging out with
her husband Ken and their cat Zigmo.

Instructor

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Agenda

• Why Macro

• Create Macro Variables For Text Substitution

• Using Macro Variables For Text Substitution

• Create Macro Variables with PROC SQL

• Handy Links

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Why SAS Macro?

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Macro Programming

TEXT

The SAS macro
facility enables you
to write code that

rewrites itself!

SAS Macro
Facility

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Substituting User-Defined Values

title "Trucks by Origin";
proc freq data=sashelp.cars;

where Type="Truck";
table Origin;

run;

title "Average Highway MPG for Trucks";
proc means data=sashelp.cars mean maxdec=1;

where Type="Truck";
var MPG_Highway;
class Origin;

run;

Truck

SUV

Sports

Easily replace
repetitive values.

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Substituting System Values

title "Cars List";
footnote "Created at 10:24 AM on October 3, 2025;
title "Trucks by Origin";
proc freq data=sashelp.cars;

where Type="Truck";
table Origin;

run;

title "Average Highway MPG for Trucks";
proc means data=sashelp.cars mean maxdec=1;

where Type="Truck";
var MPG_Highway;
class Origin;

run;

Automatically
substitute system

values into a program.

How can the
macro language
make your job

easier as a SAS
programmer?

CarsMacro.sas

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Efficiency of Macro-Based Applications

The macro facility processes the
text in a program to automate and
customize the code.

The macro
language won’t

make your code run
faster, but it can

reduce your
development and
maintenance time.

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Creating Macro Variables

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

PROC SQL Step

data manipulationDATA Step

data manipulation and reporting

SAS Programming Languages

SAS Procedures data analysis and reporting

SAS Macro
Language

generate SAS program codeSAS Macro Language

Text

Macro
Facility

SAS program

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Developing a Macro Variable

We'll use this
process to start
with regular SAS
code and produce
a macro variable.

Start with a
validated

SAS program

Generalize
with macro
variables

Create a
macro

definition with
parameters

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Macro Variables
title " s with Horsepower > ";
proc print data=sashelp.cars;

var Make Model MSRP Horsepower;
where Type=" " and Horsepower> ;

run;

Truck 250
Macro variables
store text that

can be used
anywhere in our
SAS programs.

Sedan 150

SUV 200

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Macro Variables

Macro variables
each have a name
and value that are

stored in a
memory-based
symbol table.

Global Symbol Table

ValueName

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Creating Macro Variables with %LET

%let type=Truck;
%let hp=250;

%LET name=value;

Macro variable names:
• follow SAS naming rules
• are stored as uppercase
• are not case sensitive

Global Symbol Table

ValueName

TruckTYPE

250HP

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Creating Macro Variables with %LET

• Case is preserved.
• Leading and trailing blanks are

removed.
• It stores 0 to 65,534 (64K)

characters.
• The length is dynamically set

each time a value is assigned.

Global Symbol Table

ValueName

TruckTYPE

250HP

%let type=Truck;
%let hp=250;

%LET name=value;

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Creating Macro Variables with
%LET
%let type=Truck;
%let hp=250;
%let type= Sports ;
%let origin=" Europe ";
%let value=;
%let sum=3+4;
%let varlist=Make Model Type;

Macro variables
don't have a type of

character or
numeric. All values
are stored as text.

Global Symbol Table
ValueName

TruckTYPE

250HP

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

%let type=Truck;
%let hp=250;
%let type= Sports ;
%let origin=" Europe ";
%let value=;
%let sum=3+4;
%let varlist=Make Model Type;

Creating Macro Variables with
%LET

Leading and trailing spaces are
removed. The value of an
existing macro variable is

replaced.

Global Symbol Table
ValueName

SportsTYPE

250HP

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

%let type=Truck;
%let hp=250;
%let type= Sports ;
%let origin=" Europe ";
%let value=;
%let sum=3+4;
%let varlist=Make Model Type;

Creating Macro Variables with
%LET

Quotation marks are stored
as part of the value.

Global Symbol Table
ValueName

SportsTYPE

250HP

" Europe "ORIGIN

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Creating Macro Variables with
%LET

A null value is stored.

Global Symbol Table
ValueName

SportsTYPE

250HP

" Europe "ORIGIN

VALUE

%let type=Truck;
%let hp=250;
%let type= Sports ;
%let origin=" Europe ";
%let value=;
%let sum=3+4;
%let varlist=Make Model Type;

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Creating Macro Variables with
%LET

Mathematical expressions
are not evaluated.

%let type=Truck;
%let hp=250;
%let type= Sports ;
%let origin=" Europe ";
%let value=;
%let sum=3+4;
%let varlist=Make Model Type;

Global Symbol Table
ValueName

SportsTYPE

250HP

" Europe "ORIGIN

VALUE

3+4SUM

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Creating Macro Variables with
%LET

The variable list is stored
as a text string.

Global Symbol Table
ValueName

SportsTYPE

250HP

" Europe "ORIGIN

VALUE

3+4SUM

Make Model TypeVARLIST

%let type=Truck;
%let hp=250;
%let type= Sports ;
%let origin=" Europe ";
%let value=;
%let sum=3+4;
%let varlist=Make Model Type;

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Quiz
What would be stored as the value of Mylib?

Global Symbol Table
ValueName

MYLIB

%let mylib=libname mc1 "s:/workshop";

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Quiz – Correct Answer
What would be stored as the value of Mylib?

Global Symbol Table
ValueName

libname mc1 "s:/workshop"MYLIB

%let mylib=libname mc1 "s:/workshop";

The semicolon is treated
as the conclusion of the
%LET statement and is
not stored in the macro

variable value.

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Using Macro Variables

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Resolving Macro Variables

%let type=Truck;
%let hp=250;

proc print data=sashelp.cars;
var Make Model MSRP Horsepower;
where Type="&type" and Horsepower>&hp;

run;

&name

Global Symbol Table

ValueName

TruckTYPE

250HP

substitutes the macro variable
value into the program

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Resolving Macro Variables

%let type=Truck;
%let hp=250;
title1 "Car Type: &type";
proc print data=sashelp.cars;

var Make Model MSRP Horsepower;
where Type="&type" and Horsepower>&hp;

run;

Why is &type
in quotation
marks not

&hp?

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Resolving Macro Variables

%let type=Truck;
%let hp=250;
title1 "Car Type: &type";
proc print data=sashelp.cars;

var Make Model MSRP Horsepower;
where Type="&type" and Horsepower>&hp;

run;

where Type="Truck" and Horsepower>250;
character

expression
numeric

expression

Formulate the
Where

statement
correctly

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Resolving Macro Variables

%let type=Truck;
%let hp=250;
title1 "Car Type: &type";
proc print data=sashelp.cars;

var Make Model MSRP Horsepower;
where Type="&type" and Horsepower>&hp;

run;

Typically, macro variable
values don't include

quotation marks.

Use double quotation marks
where necessary when resolving

macro variables.

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Troubleshooting
OPTIONS SYMBOLGEN|NOSYMBOLGEN;

options symbolgen;
%let type=Truck;
%let hp=250;
title1 "Car Type: &type";
proc print data=sashelp.cars;

var Make Model MSRP Horsepower;
where Type="&type" and Horsepower>&hp;

run;

The SYMBOLGEN
option writes

information to the
log when macro

variable references
resolve.

80 where Type="&type" and Horsepower>&hp;
SYMBOLGEN: Macro variable TYPE resolves to Truck
SYMBOLGEN: Macro variable HP resolves to 250

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Quotation Marks

Macro triggers in
double quotation
marks are sent to

the macro
processor.

title1 "Car Type: &type";
title2 'Car&Power Report';

Macro triggers in
single quotation

marks are treated
as regular text and
are not resolved.

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Delimiting Macro Variable
References

desired results

...
%let type=Truck;
title "&types with Horsepower > &hp";
...

What happens if a
macro variable

reference is
concatenated with

trailing text?

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Delimiting Macro Variable
References

TYPES is not found.

...
%let type=Truck;
title "&types with Horsepower > &hp";
...

Global Symbol Table
ValueName
TruckTYPE
250HP

74 %let type=Truck;
75 %let hp=250;
WARNING: Apparent symbolic reference TYPES not resolved.
SYMBOLGEN: Macro variable HP resolves to 250
76 title "&types with Horsepower > &hp";

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

...
%let type=Truck;
title "&type.s with Horsepower > &hp";
...

Delimiting Macro Variable
References

Use a period to delimit the macro
variable name from the text.

title "Trucks with Horsepower > 250";

The period does not appear
in the resolved text.

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Delimiting Macro Variable
References
footnote "Data Source: &lib..CARS";
proc print data=&lib..cars;

The first period is a
delimiter and is removed
when &lib resolves. The
second period remains

as text.

Use two periods between
the macro variable and

table name.

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Updating Macro Variables
%let type=Truck;
%let hp=250;
title "&type.s with Horsepower > &hp";
footnote "Report Created on &sysday, &sysdate";
proc print data=sashelp.cars;

var Make Model MSRP Horsepower;
where Type="&type" and

Horsepower>&hp;
run; What must be modified

in the program to
generate a list of SUVs

with horsepower greater
than 300, and then print
the date in the footnote?

m102d01.sas

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Updating Macro Variables
%let type=SUV;
%let hp=300;
title "&type.s with Horsepower > &hp";
footnote "Report Created on &sysday, &sysdate";
proc print data=sashelp.cars;

var Make Model MSRP Horsepower;
where Type="&type" and

Horsepower>&hp;
run;

Simply update the
%LET statements!

Co pyr ight © SAS Inst itute Inc . Al l r ights reserved.

Creating and using Macro Variables

This demonstration illustrates creating and
using macro variables

m103d04.sas

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Creating Macro Variables with PROC SQL

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

PROC SQL can
create and assign
macro variables

based on your data.

Creating Macro Variables

%LET
statement

PROC
SQL

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

– The WHERE clause specifies data that meets certain conditions.
– The GROUP BY clause groups data for processing.
– The HAVING clause specifies groups that meet certain conditions.
– The ORDER BY clause specifies an order for the data.

SELECT Statement: Syntax Order Mnemonic

SELECT object-item <, ...object-item>
FROM from-list
<WHERE sql-expression>
<GROUP BY object-item <, … object-item >>
<HAVING sql-expression>
<ORDER BY order-by-item <DESC>

<, …order-by-item>>;

SO
FEW
WORKERS
GO
HOME
ON TIME

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

PROC SQL Query (Review)

proc sql;
select Model, MPG_Highway

from sashelp.cars
where MPG_Highway>50
order by MPG_Highway;

quit;

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

PROC SQL;
SELECT <DISTINCT> item-1 < , item-2, …>

<INTO : macvar-1 < …, : macvar-n>
FROM clause

<WHERE clause>
<ORDER BY clause>;

QUIT;

Creating Macro Variables with PROC SQL

The INTO clause assigns
values produced by the

query to macro variables.

Be sure to precede
each macro

variable name with
a colon.

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

proc sql noprint;
select make, msrp into :expmake, :maxmsrp
from sashelp.cars
order by msrp desc
;
%put &=expmake;
%put &=maxmsrp;

Creating Macro Variables with PROC SQL

Global Symbol Table
ValueName

PorscheMAKE

$192,465MAXMSRP

Store the first row of the
query into 2 macro
variables & then request
the variable values.

MAKE & MAXMSRP are
created and stores the
make &MSRP of car with
highest MSRP

Syntax 1 – Storing Value of First Row in Declared Macro Variables

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Creating Macro Variables with PROC SQL

Global Symbol Table
ValueName

AsiaORIGIN1

EuropeORIGIN2

USAORIGIN3

proc sql noprint;
select distinct Origin

into :origin1-:origin3
from sashelp.cars;

quit;

suppresses the report

creates a series of macro
variables for the three

distinct values of Origin

Syntax 1 – Storing Values from Multiple Rows in Declared Macro Variables

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Creating Macro Variables with PROC SQL

Global Symbol Table
ValueName

HybridTYPE1

SUVTYPE2

...

WagonTYPE6

proc sql noprint;
select distinct Type

into :type1-
from sashelp.cars;

quit;

If you don’t know
how many macro

variables to create,
you can omit the

upper bound.

Syntax 2 - Storing Values from Multiple Rows in a List of Macro Variables

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Global Symbol Table
ValueName

Asia, Europe, USAORIGINLIST

3SQLOBS

Creating Macro Variables with PROC SQL

proc sql noprint;
select distinct Origin

into :originlist separated by ", "
from sashelp.cars;

quit;
Use SEPARATED BY to

assign multiple values to
a single macro variable.

Syntax 3 - Storing Values of All Rows in One Macro Variable

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

PROC SQL: DICTIONARY Tables

DICTIONARY table

• information about each SAS session
• updated automatically by SAS
• Read-only
• metadata: data about other data
• valid in PROC SQL only

SAS
libraries

Columns

Tables

Many
more!

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

DICTIONARY.libnamesDICTIONARY.columns

Explore
Data

DICTIONARY.tables

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Want to learn more?

Please visit learn.sas.com to browse our catalog. Details from this
presentation are derived from the following courses:

• SAS Macro 1: Essentials
• SAS SQL 1: Essentials

 Did you
enjoy this
session, Let us
know in the
evaluation

Co pyr ight © SAS Inst i tute Inc . Al l r ights reserved.

Thank You

Rebecca Callaway
SAS Institute San Diego

EMAIL Rebecca.Callaway@sas.com
LINKEDIN https://www.linkedin.com/in/rebeccazcallaway/

 Did you
enjoy this
session, Let us
know in the
evaluation

