SQL and Macro 101

University of lowa SAS Users Group
October 3, 2025

SAaS

)

Rebecca Callaway

SQL and Macro 101

Rebecca Callaway, SAS® |nstitute

With a background in Mathematics and Statistics, SAS
Instructor Rebecca Callaway engages with logic, visuals,
and analogies to spark critical thinking since 2000.

Rebecca teaches classes on SAS programming, SQL, SAS
Visual Analytics, SAS Viya, etc. to support users in the
adoption of SAS software.

When not working, Rebecca enjoys spending time outdoors
enjoying the lovely San Diego weather and hanging out with
her husband Ken and their cat Zigmo.

Agenda

, Nuts & Bolts - PROC SQL Overview
= i:__:i = Specifying Columns

L~ e Specifying Rows

g ¢ Summarizing Data

|;q—l—|‘._llj ° Joining Tables

(a] Introduction to Macro

9sas

Copyright © SAS Institute Inc. All rights reserve d.

Nuts & Bolts - PROC SQL Overview

Gsas

Copyright © SAS Institute Inc. All rights reserved.

Structured Query Language

Structured Query Language (SQL) is a standardized language originally designed as a
relational database query tool.

SQL is currently used in many software products to retrieve and update data.

proc sql;
select Employee_ ID
from orion.employee_data
where Salary le 100000;
select Employee Gender,
avg (Salary)
from orion.employee_data

group by Employee_ Gender;
quit;

Copyright © SAS Institute Inc. All rights reserve d. J*

SQL Procedure versus Traditional SAS

The SQL procedure can sometimes reproduce the results of
multiple DATA and procedure steps with a single query.

g

DATA Step
- -

PROC SORT

—p

9sas

Copyright © SAS Institute Inc . All rights reserve d.

Objectives

- ldentify key syntax of the SQL procedure.

— List key features of the SQL procedure.

- List key features of the SELECT statement.
— List SQL procedure statements.

9sas

Copyright © SAS Institute Inc . All rights reserve d.

SELECT Statement

A SELECT statement contains smaller building blocks called clauses.

proc sql;
select Employee ID, Employee Gender, Salary
from orion.employee information

where Employee Gender='F'
order by Salary desc;

quit;

Although it can contain multiple clauses, each SELECT statement begins with the
SELECT keyword and ends with a semicolon.

$102d01 Gsas

Viewing the Output

Partial PROC SQL Output

The SAS System

Employee

Employee Annual

Employee ID Gender Salary
120260 F $207,885
120719 F $87,420
120661 F $85,495
121144 F $83,505
120798 F $80,755

Gsas

SELECT Statement: Required Clauses

SELECT object-item <, ...object-item>
FROM from-list;

- The SELECT clause specifies the columns and column order.
- The FROM clause specifies the data sources.
— You can query from 1to 256 tables.

Gsas

SELECT Statement Syntax

PROC SQL;
SELECT object-tem <, ...object-item>
FROM from-list

<WHERE sgFexpression>
<GROUP BY object-tem <, ... object-item ==
<HAVING sgfexpression>
<ORDER BY order-by-tem <DESC>
<, ...order-by-tem=>;

QUIT;

The specified order of the above clauses within
the SELECT statement is required.

Gsas

Questions 'g?

Gsas

Copyright © SAS Institute Inc. All rights reserved.

Specifying Columns

Gsas

Copyright © SAS Institute Inc. All rights reserved

Objectives

- Explore unfamiliar data.
— Display columns directly from a table.

— Display columns calculated from other columns
inaquery.

9sas

Copyright © SAS Institute Inc . All rights reserve d.

Querying All Columns in a Table

To print all of a table’s columns in the order in which they were stored,
specify an asterisk in a SELECT clause.

proc sql;
select *
from orion.employee information;

quit;

Partial PROC SQL Output

The SAS System

Start
Employee ID Date End Date Department
Employee Employee Employee
Annual Employee Birth Employee Termination Manager for
Employee Job Title Salary Gender Date Hire Date Date Employee

120101 01JUL2007 31DEC9999 Sales Management
Director $163,040 M 18AUG1980 01JUL2007 . 120261

$102d04 Gsas

Business Scenario

Produce a report that contains selected information for all Orion Star employees.

orion.employee_information

PROC SQL

0] =

Employee
Employee ID Gender Salary
120101 M 163040
120102 M 108255
120103 M 87975
120104 F 46230
120105 F 27110

Gsas

Querying Specific Columns in a Table

List the columns that you want and the order to display them in the SELECT clause.

proc sql;
select Employee ID, Employee Gender,
Salary
from orion.employee information;
quit;

$102d06 Gsas

Viewing the Output

Partial PROC SQL Output

The SAS System

Employee

Employee Annual

Employee ID Gender Salary
120101 M $163,040
120102 M $108,255
120103 M $87,975
120104 F $46,230
120105 F $27,110
120106 M $26,960
120107 F $30,475

Gsas

Business Scenario

Modify the previous report by creating a new column, Bonus, which contains an
amount equal to 10% of the employee’s salary.

orion.employee_information

Employee ID Salary Bonus
120101 163040 16304
120102 108255 10825.5
120103 87975 8797.5
120104 46230 4623
120105 27110 2711

Gsas

Calculated Columns

Name the new column using the AS keyword.

proc sql;

quit;

select Employee ID, Salary,
Salary*.10 as Bonus
from orion.employee information;

Partial PROC SQL Output

The SAS System

Employee
Annual
Employee ID Salary (Bonus)
120101 $163,040 16304
120102 $108,255 |[10825.5
120103 $87,975 8797.5
. —

s102d07

Gsas

Questions 'g?

Gsas

Copyright © SAS Institute Inc. All rights reserved.

Specifying Rows

Gsas

Copyright © SAS Institute Inc. All rights reserved

Objectives

— Select a subset of rows in a query.

9sas

Copyright © SAS Institute Inc. All rights reserve d.

Business Scenario

Management requested a list of employees whose salaries exceed $112,000.

orion.employee_information

PROC SQL

= e

¥

Employee

Annual

Employee ID Employee Job Title Salary
120101 Director $163,040
120259 Chief Executive Officer $433,800
120260 Chief Marketing Officer $207,885
120261 Chief Sales Officer $243,190
120262 Chief Financial Officer $268,455

Gsas

Subsetting with the WHERE Clause

Use a WHERE clause to specify a condition that the data must satisfy before being
selected.

proc sql;

select Employee ID, Job Title, Salary
from orion.employee information
where Salary > 112000;

quit;

WHERE sql-expression

$102d14 Gsas

Viewing the Output

PROC SQL QOutput

The SAS System

Employee

Annual

Employee ID Employee Job Title Salary
120101 Director $163,040
120259 Chief Executive Officer $433,800
120260 Chief Marketing Officer $207,885
120261 Chief Sales Officer $243,190
120262 Chief Financial Officer $268,455
120659 Director $161,290
121141 Vice President $194,885
121142 Director $156,065

Gsas

Business Scenario

Management requested a report that includes only those employees who

receive bonuses less than $3000.

orion.employee_information

PROC SQL

= @

Employee
Employee ID Gender Salary Bonus
120105 F 27110 2711
120106 M 26960 2696
120108 F 27660 2766
120109 F 26495 2649.5
120110 M 28615 2861.5

Gsas

Subsetting with Calculated Values

First attempt:

proc sql;
select Employee ID, Employee Gender,
Salary, Salary*.10 as Bonus
from orion.employee information
where Bonus<3000;

quit;

A WHERE clause is evaluated before the
SELECT clause. Therefore, columns used in the
WHERE clause must exist in the table.

Partial SAS Log

ERROR: The following columns were not found in the contributing
tables: Bonus.

$102d15 Gsas

Subsetting with Calculated Values

An alternate method is to use the CALCULATED keyword in the
WHERE clause.

Copyright © SAS Institute Inc

proc sql;
select Employee ID, Employee Gender,
Salary, Salary*.10 as Bonus
from orion.employee information
where calculated Bonus<3000;

quit; ~

SAS enhancement

s102d15

Gsas

Viewing the Output

Partial PROC SQL Output

The SAS System

Employee

Employee Annual
Employee ID Gender Salary Bonus
120105 F $27,110 2711
120106 M $26,960 2696
120108 F $27,660 2766
120109 F $26,495 2649.5
120110 M $28,615 2861.5
120111 M $26,895 2689.5
120112 F $26,550 2655

Gsas

Questions 'g?

Gsas

Copyright © SAS Institute Inc. All rights reserved.

Summarizing Data

Gsas

Copyright © SAS Institute Inc. All rights reserved.

Objectives

— Group data and produce summary statistics for each group.
- Subset a query on summarized values.

9sas

Copyright © SAS Institute Inc. All rights reserve d.

Business Scenario

Management requested a report containing the total annual donations for each

employee.

orion.employee_donations

PROC SQL

e

Partial Results

Employee

Annual

Identifier Donation

120736
120759
120681

$45.00
$40.00
$40.00

Gsas

Summary Functions: Across a Row

Total each employee’s annual cash donations.

SUM(col1, ..., coln)

proc sql;
select Employee ID
label='Employee Identifier',
Qtrl,Qtr2,Q0tr3,0Q0tr4,
sum (Qtrl,Qtr2,0tr3,Qtr4d)
label='Annual Donation'
format=dollar5.
from orion.employee donations
where Paid By="Cash or Check"
order by 6 desc;

quit;

$103d06 Gsas

Viewing the Output

Partial PROC SQL Output

Employee Annual
Identifier Qtri Qtr2 Qtr3 Qtr4 Donation
120736 25 . . 20 $45
120759 15 20 5 . $40
120681 10 10 5 15 $40
120679 . 20 5 15 $40
120777 5 15 5 15 $40

Gsas

Business Scenario

Management requested a report containing the total contributions for all
employees in the first quarter.

i : Desired Results
orion.employee_donations

PROC SQL Total
i Quarter 1

- Flag B Donations

15615

Gsas

Summary Functions: Summarize a Column

Total employee’s annual cash donations.

SUM(col1)

proc sql;
select sum(Qtrl)
label='Total Quarter 1 Donations’
from orion.employee donations;

quit;

$103d06 Gsas

Business Scenario

Produce a report that determines the average salary by gender.

i . i Desired Results
orion.employee_information

PROC SQL Employee
Gender Average
‘ 3 ‘:_s‘_/_ -
8 RS F 37002.88
M 43334.26

9 9
o (3

Gsas

Grouping Data

You can use the GROUP BY clause to do the following:

- classify the data into groups based on the values of one or more columns
— calculate statistics for each unique value of the grouping columns

proc sql;
title "Average Salary by Gender";
select Employee Gender as Gender,
avg (Salary) as Average
from orion.employee information
where Employee Term Date is missing
group by Employee Gender;
quit;

GROUP BY group-by-item<,..., group-by-item>

$103d10 Gsas

Viewing the Output

PROC SQL Qutput

Average Salary by Gender
Employee
Gender Average
F 37002.88
M 43334.26

Gsas

Questions 'g?

Gsas

Copyright © SAS Institute Inc. All rights reserved.

Joining Tables

Gsas

Copyright © SAS Institute Inc. All rights reserved

Objectives

- |dentify different ways to combine data horizontally from multiple tables.
- Distinguish between inner and outer SQL joins.
— Understand the Cartesian product.

9sas

Copyright © SAS Institute Inc . All rights reserve d.

Exploring the Data

customers

ID

Name

transactions

101

Smith

104

Jones

102

Blank

ID | Action Amount
102 | Purchase $100
103 | Return $52
105 | Return $212

The customers table is representative of a customer dimension table. There would be
additional columns with data about customers including address, age, and so on.

The transactions table is representative of a fact table. There would be columns holding

all the key column data, Product_ID, Employee_ID, and so on.

Gsas

Types of Joins

PROC SQL supports two types of joins:

Inner joins return only matching rows. @

Outer joins return all matching rows, plus nonmatching rows from one or both tables

@ A0 (O

Full Right

9sas

Copyright © SAS Institute Inc. All rights reserve d.

Cartesian Product

A query that lists multiple tables in the FROM clause without a WHERE clause
produces all possible combinations of rows from all tables. This result
is called a Cartesian product.

proc sqil;
select *
from customers, transactions;

it;
i SELECT ...
FROM table-name, table-name
<, ...,table-name >;

To understand how SQL processes a join, it is helpful to understand the concept of the
Cartesian product.

Gsas

Building the Cartesian Product

customers transactions
ID | Name ID | Action Amount
101 | Smith 102 | Purchase $100
104 | Jones % 103 | Return $52
102 | Blank 105 | Return $212
Result Set
ID Name ID Action Amount
101 Smith 102 Purchase $100
101 Smith 103 Return $52
101 Smith 105 Return $212
. 104 dJones 102 Purchase $100
_The Cartesian pl’F)dUCt 104 dJones 103 Return $52
is rarely the desired 104 Jones 105 Return $212
102 Blank 102 Purchase $100
result of a query. 102 Blank 103 Return $52
102 Blank 105 Return $212

Gsas

Questions 'g?

Gsas

Copyright © SAS Institute Inc. All rights reserved.

Objectives

— Join two or more tables on matching columns.
— Qualify column names to identify specific columns.
- Use a table alias to simplify the SQL code.

9sas

Copyright © SAS Institute Inc . All rights reserve d.

Report 1: Inner Join

Management has requested a report showing all valid order information.

customers transactions

ID Name Action Amount

102 Blank Purchase $100

Gsas

Inner Join
Specify the matching criteria in the WHERE clause.

proc sqil;
select *
from customers, transactions
where customers. ID=
transactions.ID;

quit;

SELECT object-item<, ...object-item>
FROM table-name, ... table-name

WHERE join condition
<AND sql-expression>
<other clauses>;
PROC SQL QOutput
ID Name ID Action Amount

102 Blank 102 Purchase $100 Gsas

Completed Code for Report 1

To display the ID column only once in the results, qualify the ID column in the SELECT

clause.

customers transactions
ID | Name ID | Action Amount
101 | Smith 102 | Purchase $100
104 | Jones 103 | Return $52
102 | Blank 105 | Return $212

select customers.ID, Name, Action, Amount
from customers,

transactions

where customers.ID=transactions.ID;

ID Name Action

Amount

102 Blank Purchase

$100

Gsas

Abbreviating the Code with a Table Alias

proc sql;

select c¢.ID, Name, Action, Amount
from customers as ¢, transactions as t
where c¢.ID=t.ID;

quit;

PROC SQL QOutput

ID Name Action Amount

102 Blank Purchase $100

$104d04 Gsas

Compare SQL Join and DATA Step Merge

Explicit sorting of data Not required Required
before join/merge

Same-name columns in Not required Required
join/merge expressions

Equality in join or merge Not required Required
expressions

Gsas

Questions 'g?

Gsas

Copyright © SAS Institute Inc. All rights reserved.

Introduction to the Macro Facility

Gsas

Copyright © SAS Institute Inc. All rights reserved.

Macro Programming

SAS Macro
TEXT

g

Facility

The SAS macro
facility enables you
to write code that
rewrites itself!

@ Gsas

Substituting User-Defined Values

Easily replace

title "Trucks by Origin"; repetitive values.

proc freq data=sashelp.cars;
where Type='"Truck";
table Origin;

run;

Truck

¥

title "Average Highway MPG for Trucks";
proc means data=sashelp.cars mean maxdec=1;
where Type='"Truck";
var MPG Highway;
class Origin;
run;

Sports

Gsas

Substituting User-Defined Values

Create a Macro
Variable to replace
repetitive values.

$let Type=Truck;

title "&Type by Origin”;

proc freq data=sashelp.cars;
where Type="&Type”;
table Origin; Truck

run, !

title "Average Highway MPG for &Type";

proc means data=sashelp.cars mean maxdec=1;
where Type="&Type”;
var MPG Highway;
class Origin;

run;

Sports

Gsas

Substituting System Values Automatically

substitute system
values into a program.

title "Cars List";
footnote '"Created at 10:24 AM on 14SEP2025;
title "Trucks by Origin";
proc freq data=sashelp.cars;
where Type="Truck";

table Origin; How can the
run; macro language
make your job

title "Average Highway MPG for Trucks"; easier as a SAS
proc means data=sashelp.cars mean maxdec=1l; | programmer?

where Type="Truck";
var MPG Highway;
class Origin;
run; °o

CarsMacro.sas §Sas

Substituting System Values Automatically

substitute system
values into a program.

title "Cars List";

footnote '"Created at &systime on &sysdated;
title "Trucks by Origin";

proc freq data=sashelp.cars;

where Type="Truck"; Using the macro
table Origin; facility will make
run; your programs

more dynamic and

title "Average Highway MPG for Trucks"; maintenance-free!

proc means data=sashelp.cars mean maxdec=1;
where Type="Truck";
var MPG Highway;
class Origin;

run; oo

CarsMacro.sas §Sas

Efficiency of Macro-Based Applications

&
%

The macro facility processes the
text in a program to automate and
customize the code.

The macro
language won'’t
make your code run
faster, but it can
reduce your
development and
maintenance time,

Gsas

Copyright © SAS Institute Inc. All rights reserved.

Handy Links

» SAS 9.4 PROC SQL user’s guide

» Video - Step-by-step PROC SQL

* Go home on time with 5 PROC SQL tips

» Ask The Expert Webinar - Top 5 Handy PROC SQL Tips

» Know thy data: Dictionary tables SAS Global Forum Paper

» SAS YouTube Video - Mastering the WHERE clause in PROG SQL

« SAS YouTube Video - Power of SAS SQL -SAS Global Forum 2021

» SAS YouTube Video - Step by step PROC SQL - SAS Global forum 2020

o “Ask the Expert Webinar - Why choose between SAS data Step & PROC SQL When You Can Have
Both

9sas

Copyright © SAS Institute Inc. All rights reserve d.

Recommended Courses From This Presentation

e SAS® SQL 1: Essentials

 SAS® Macro Language: Essentials

9sas

Copyright © SAS Institute Inc. All rights reserved.

v Did you
enjoy this

Thank You o e

evaluation

Rebecca Callaway
SAS Institute San Diego

EMAIL Rebecca.Callaway@sas.com
LINKEDIN https://www.linkedin.com/in/rebeccazcallaway/

SAaS

5

2 for 1 Advanced Macro & SQL

University of lowa SAS User Group
October 3, 2025

Rebecca Z Callaway
SAS Institute Inc

)

SAaS

Instructor

Rebecca Callaway, SAS® |nstitute

With a background in Mathematics and Statistics, SAS
Instructor Rebecca Callaway engages with logic, visuals,
and analogies to spark critical thinking since 2000.

Rebecca teaches classes on SAS programming, SQL, SAS
Visual Analytics, SAS Viya, etc. to support users in the
adoption of SAS software.

When not working, Rebecca enjoys spending time outdoors
enjoying the lovely San Diego weather and hanging out with
her husband Ken and their cat Zigmo.

Agenda

T Why Macro

A t Create Macro Variables For Text Substitution
Q ¢ Using Macro Variables For Text Substitution
€ : Create Macro Variables with PROC SQL

So ¢+ Handy Links

Copyright © SAS Institute Inc. All rights reserved . ‘)

Why SAS Macro?

Gsas

Copyright © SAS Institute Inc. All rights reserved.

Macro Programming

SAS Macro
TEXT

g

Facility

The SAS macro
facility enables you
to write code that
rewrites itself!

@ Gsas

Substituting User-Defined Values

Easily replace

title "Trucks by Origin"; repetitive values.

proc freq data=sashelp.cars;
where Type='"Truck";
table Origin;

run;

Truck

¥

title "Average Highway MPG for Trucks";
proc means data=sashelp.cars mean maxdec=1;
where Type='"Truck";
var MPG Highway;
class Origin;
run;

Sports

Gsas

Substituting System Values Automatically

substitute system
values into a program.

title "Cars List";
footnote "Created at 10:24 AM on October 3, 2025;
title "Trucks by Origin";
proc freq data=sashelp.cars;
where Type="Truck";

table Origin; How can the
run; macro language
make your job

title "Average Highway MPG for Trucks"; easier as a SAS
proc means data=sashelp.cars mean maxdec=1l; programmer?

where Type="Truck";
var MPG Highway;
class Origin;
run; ° o

CarsMacro.sas §Sas

Efficiency of Macro-Based Applications

&
%

The macro facility processes the
text in a program to automate and
customize the code.

The macro
language won'’t
make your code run
faster, but it can
reduce your
development and
maintenance time,

Gsas

Copyright © SAS Institute Inc. All rights reserved.

Creating Macro Variables

Gsas

Copyright © SAS Institute Inc. All rights reserved.

SAS Programming Languages

DATA Step data manipulation
PROC SQL Step data manipulation and reporting

SAS Procedures data analysis and reporting

generate SAS program code

= Macro (((l
=== Facility Iﬁ.

SAS program

Gsas

Developing a Macro Variable

Start with a
validated
SAS program

We'll use this
process to start
with regular SAS
code and produce
a macro variable.

9sas

Macro Variables

title " s with Horsepower > "
proc prin data=sashelp.cars;
var Mate Model MSRP Horsepowe: ;

where .'ype=" " and Horsep(« wer>
run;
Truck 250
Sedan 150
SUV 200

Macro variables
store text that
can be used
anywhere in our
SAS programs.

Gsas

Macro Variables

Macro variables
each have a name
and value that are
stored in a
memory-based
symbol table.

Global Symbol Table

Name Value

Gsas

Creating Macro Variables with %LET

%LET name=value;

Macro variable names:

» follow SAS naming rules
» are stored as uppercase
* are not case sensitive

3let type=Truck;
%$let hp=250;

Global Symbol Table
Name Value
TYPE Truck
HP 250

Gsas

Creating Macro Variables with %LET

%LET name=value; $let type=Truck;
%$let hp=250;

« Case is preserved.
» Leading and trailing blanks are

removed.
|t stores O to 65,534 (64K)
Characters. Global Symbol Table
* The length is dynamically set
each time a value is assigned. Name | Value
TYPE Truck
HP 250

Gsas

Creating Macro Variables with

%NlLET

$let
$let
$let
$let
$let
$let
Slet

type=Truck;
hp=250;

type= Sports ;
origin=" Europe ";
value=;

sum=3+4;
varlist=Make Model

Type;

Global Symbol Table
Name Value
TYPE Truck
HP 250

Macro variables
don't have a type of
character or
numeric. All values
are stored as text.

Gsas

Creating Macro Variables with
% L E T Global Symbol Table

$let type=Truck; Name Value
%let hp=250; TYPE Sports

slet type= Sports ;

%let origin=" Europe ";

3let value=;

%let sum=3+4;

%let wvarlist=Make Model Type;

HP 250

Leading and trailing spaces are
removed. The value of an
existing macro variable is

replaced.

Gsas

Creating Macro Variables with
% L E T Global Symbol Table

Name Value

%3let type=Truck;
%let hp=250; TYPE Sports
%let type= Sports ; HP 250
$let origin=" Europe ";

3let value=;

%let sum=3+4;

%let wvarlist=Make Model Type;

ORIGIN "Europe "

Quotation marks are stored
as part of the value.

Gsas

Creating Macro Variables with
% L E T Global Symbol Table

%$let type=Truck; Name | Value
%let hp=250; TYPE Sports
%let type= Sports ; HP 250

%let origin=" Europe ";
$let value=; ORIGIN | " Europe”
%let sum=3+4; VALUE
%let wvarlist=Make Model Type;

A null value is stored.

Gsas

Creating Macro Variables with
% L E T Global Symbol Table

%$let type=Truck; Name | Value
%let hp=250; TYPE Sports
%let type= Sports ; HP 250

%let origin=" Europe ";

$let value=: ORIGIN | " Europe”

$let sum=3+4; VALUE
%let wvarlist=Make Model Type; SUM 3+4

Mathematical expressions
are not evaluated.

Gsas

Creating Macro Variables with
%LET

$let
Slet
$let
$let
$let
$let
$let

type=Truck;

hp=250;

type= Sports ;

origin=" Europe ";
value=;

sum=3+4;

varlist=Make Model Type;

The variable list is stored
as a text string.

Global Symbol Table
Name Value
TYPE Sports
HP 250
ORIGIN " Europe "
VALUE
SUM 3+4
VARLIST Make Model Type

Gsas

Quiz

What would be stored as the value of Mylib?

$let mylib=libname mcl "s:/workshop";

Global Symbol Table
Name Value
MYLIB

Gsas

Quiz - Correct Answer

What would be stored as the value of Mylib?

$let mylib=libname mcl "s:/workshop";

Global Symbol Table

Name

Value

MYLIB

libname mc1”s:/workshop”

The semicolon is treated
as the conclusion of the
%LET statement and is
not stored in the macro
variable value.

Gsas

Using Macro Variables

Gsas

Copyright © SAS Institute Inc. All rights reserved.

Resolving Macro Variables

&name substitutes the macro variable
value into the program

Global Symbol Table

%let type=Truck;
%let hp=250;

proc print data=sashelp.cars;
var Make Model MSRP Horsepower;

Name Value
TYPE Truck
HP 250

where Type="&type" and Horsepower>&hp;

run,

Gsas

Resolving Macro Variables

Why is &type

: fati
$let type=Truck; I:iﬁéié?
%$let hp=250; &hp?

titlel "Car Type: &type";
proc print data=sashelp.cars;

var Make Model MSRP Horsepower;

where Type='"&type" and Horsepower>&hp;
run;

N,

Gsas

Resolving Macro Variables

Formulate the

%$let type=Truck; Qxhaet
$let hp=250; Statemen
correctly

titlel "Car Type: &type";
proc print data=sashelp.cars;

var Make Model MSRP Horsepower;

where Type='"&type" and Horsepower>&hp;
run;

where Type="Truck" and Horsepower>250;

character numeric
expression expression

Gsas

Resolving Macro Variables

Typically, macro variable

$let type=Truck; values don't include

slet hp=250; quotation marks.
titlel "Car Type: &type";
proc print data=sashelp.cars;

var Make Model MSRP Horsepower;

where Type='"&type" and Horsepower>&hp;
run;

Use double quotation marks
where necessary when resolving
macro variables.

Gsas

Troubleshooting

OPTIONS SYMBOLGEN | NOSYMBOLGEN;

options symbolgen;
3let type=Truck;
%let hp=250;
titlel "Car Type: &type";
proc print data=sashelp.cars;
var Make Model MSRP Horsepower;

where Type="&type" and Horsepower>&hp;

run,

The SYMBOLGEN
option writes
information to the
log when macro

variable references

resolve.

80 where Type="&type" and Horsepower>&hp;
SYMBOLGEN: Macro variable TYPE resolves to Truck
SYMBOLGEN: Macro variable HP resolves to 250

Gsas

Quotation Marks

titlel "Car Type: &type"; Car Type: Truck
title2 'Car&Power Report'; Car&Power Report
Macro triggers in Macro triggers in
double quotation single quotation
marks are sent to marks are treated
the macro as regular text and
Processor. are not resolved.

Gsas

Delimiting Macro Variable

1

3let type=Truck;
title "&types with Horsepower > &hp'";

Trucks with Horsepower > 250

Obs Make Model MSRP | Horsepower '
63 Cadilac | Escalade EXT | $52,975 345 |
85 Chevrolet | Avalanche 1500 | $36.100 205
88 Chevrolet Silverado SS | $40,340 | 300

o] LA A nne [aTaTal

desired results

What happens if a
macro variable
reference is
concatenated with
trailing text?

Gsas

Delimiting Macro Variable

3let type=Truck;

title "&types with Horsepower > &hp";

TYPES is not found.

—_Global Symbol Table
Name Value
TYPE Truck
HP 250

74 %let type=Truck;
75 %let hp=250;

WARNING: Apparent symbolic reference TYPES not resolved.
SYMBOLGEN: Macro variable HP resolves to 250
76 title "&types with Horsepower > &hp";

Gsas

Delimiting Macro Variable
References

%let type=Truck;
title "&type.s with Horsepower > &hp";

Use a period to delimit the macro
variable name from the text.

title "Trucks with Horsepower > 250";

The period does not appear
in the resolved text.

Gsas

Delimiting Macro Variable
References

footnote "Data Source: &lib. .CARS";
proc print data=&lib..cars;
A

Use two periods between The first period is a
the macro variable and delimiter and is removed
table name. when &lib resolves. The
second period remains

as text.

@ §sas

Updating Macro Variables

3let type=Truck;
%let hp=250;
title "&type.s with Horsepower > &hp";
footnote "Report Created on &sysday, &sysdate";
proc print data=sashelp.cars;

var Make Model MSRP Horsepower;

where Type="&type" and

Horsepower>&hp;

run; What must be modified

in the program to
generate a list of SUVs
with horsepower greater
than 300, and then print
the date in the footnote?

m102d01l.sas OSAS

Updating Macro Variables

3let type=SUV;
%let hp=300;

title "&type.s with Horsepower > &hp";
footnote "Report Created on &sysday, &sysdate";
proc print data=sashelp.cars;

var Make Model MSRP Horsepower;

where Type="&type" and
Horsepower>&hp;
run;

Simply update the
%LET statements!

Obs
28
57

119
144
167
21
300
3N
378

SUVs with Horsepower > 300

Make Maodel MSRP | Horsepower
BMW X54.4i 352,195 325
Cadillac | SRX VS 546,995 320
Ford Excursion 6.8 XLT 41,475 310
GMC Yukon XL 2500 SLT 346,265 325
Hummer = H2 349,995 316
Lincoln | Awiator Ultimate 342 915 302
Missan Pathfinder Armada SE | 533,840 305
Porsche | Cayenne S 356,665 340
Toyota Land Cruiser 354,765 325

Report Created on Friday, 01NOV19

Gsas

m103d04.sas OSaAS

Creating Macro Variables with PROC SQL

Gsas

Copyright © SAS Institute Inc. All rights reserved.

Creating Macro Variables

%LET
statement PROC SQL can

- create and assign

macro variables
based on your data.

PROC
SQL

9sas

Copyright © SAS Institute Inc. All rights reserved.

SELECT Statement: Syntax Order Mhemonic

SO SELECT object-item <, ...object-item>

FEW FROM from-list

WORKERS <WHERE sql-expression>

GO <GROUP BY object-item <, ... object-item >>
HOME <HAVING sql-expression>

ON TIME <ORDER BY order-by-item <DESC>

<, ...order-by-item>>;

- The WHERE clause specifies data that meets certain conditions.
- The GROUP BY clause groups data for processing.
- The HAVING clause specifies groups that meet certain conditions.
— The ORDER BY clause specifies an order for the data. Gsas

PROC SQL Query (Review)

proc sql;

select Model, MPG Highway
from sashelp.cars
where MPG Highway>50

order by MPG Highway;

qUit ’
Model MPG (Highway)
Prius 4dr (gas/electric) 51
Civic Hybrid 4dr manual (gas/electric) 51
Insight 2dr (gas/electrc) 66

T 9sas

Creating Macro Variables with PROC SQL

PROC SQL; The INTO clause assigns

SELECT <DISTINCT> item-1 < , item-2, .> | VvAluesproduced by the
query to macro variables.
<INTO : macvar-1 < .., : macvar-n>
FROM clause
<WHERE clause>
<ORDER BY clause>;

QUIT;

Be sure to precede
each macro
variable name with
a colon.

Gsas

Creating Macro Variables with PROC SQL

Syntax 1 - Storing Value of First Row in Declared Macro Variables wercedessenz s128.420

Mercedes-Benz 5126670

Mercedes-Benz 3121.770

Pro c s ql n op rin t ’ Mercedes-Benz $94.820

select make, msrp into :expmake, :maxmsrp Mercedes-Benz 90,520
from sashelp.cars A S
d b de sc Jaguar $86.995

orqaer msx . E
Y P Store the first row of the St T S B
. . Audi $84 600
’ query into 2 macro = R
$put &=expmake; variables & then request e =
%put &:maxmsrp : the variable values. Dodge $81.795
| Porsche 579165
Mercedes-Benz 376,870
Global Symbol Table MAKE & MAXMSRP are Porsche $76.765
Cadillac 576,200

Name Value created and stores the
make &MSRP of car with j“'kswage" izizzg
. aguar :

MAKE Porsche highest MSRP e -
MAXMSRP $192,465 Mercedes-Benz =~ §74.320
BMW $73.195

I and Ravar ~r 72 RN

Creating Macro Variables with PROC SQL

Syntax 1 - Storing Values from Multiple Rows in Declared Macro Variables

proc sql noprint;
select distinct Origin
into :originl-:origin3

suppresses the report

from sashelp.cars;
quit; creates a series of macro
Global Symbol Table verbles for e fuee
distinct values of Origin
Name Value

ORIGIN1 Asia
ORIGINZ2 Europe

ORIGIN3 USA

i elnc. All rights reserved.)

Creating Macro Variables with PROC SQL

Syntax 2 - Storing Values from Multiple Rows in a List of Macro Variables

proc sql noprint;
select distinct Type
into :typel-
from sashelp.cars;

quit;
Global Symbol Table
Name Value

TYPE1 Hybrid
TYPE2 SuUv

TYPE6 Wagon

If you don’t know
how many macro
variables to create,
you can omit the
upper bound.

Gsas

Creating Macro Variables with PROC SQL

Syntax 3 - Storing Values of All Rows in One Macro Variable

quit;

proc sql noprint;
select distinct Origin
into :originlist separated by ", "
from sashelp.cars;

Global Symbol Table

Name

Value

ORIGINLIST

Asia, Europe, USA

SQLOBS

3

Use SEPARATED BY to

assign multiple values to

a single macro variable.

Gsas

PROC SQL: DICTIONARY Tables

000 ﬁ
000
00

000

DICTIONARY table

information about each SAS session
updated automatically by SAS
Read-only

metadata: data about other data
valid in PROC SQL only

Gsas

PROC SQL: DICTIONARY Tables

Explore
BEVE)

000a0
00adgd
000

0
0

000

00
g0
00

DICTIONARY .tables

DICTIONARY .columns

DICTIONARY libnames

Gsas

Want to learn more?

Please visit learn.sas.com to browse our catalog. Details from this
presentation are derived from the following courses:

SAS Macro 1: Essentials
SAS SQL 1: Essentials

v Did you
enjoy this
session, Let us
know in the

evaluation

SAaS

5

v Did you
enjoy this

Thank You o e

evaluation

Rebecca Callaway
SAS Institute San Diego

EMAIL Rebecca.Callaway@sas.com
LINKEDIN https://www.linkedin.com/in/rebeccazcallaway/

SAaS

5

