
THE UNIVERSITY OF IOWA

Introduction to SAS Programming

Slide 1

Section I. The SAS Windows Environment
Learning Objectives

At the conclusion of this presentation, participants should be
able to:
 Demonstrate knowledge and understanding of how to

access SAS on the UI campus
 Identify various components that make up the SAS

windows environment

In this session, we will focus on the simplest and most direct
methods for reading in data, performing data transformations
and conducting simple analyses.

Slide 2

Section I. The SAS Windows Environment
SAS Access at The University of Iowa

-- SAS in a “stand-alone” form can be operated in a PC
Windows, Macintosh or Linux (running Windows OS)
environment.

-- Access to SAS is also available on the UI campus
through the Virtual Desktop -- a web-based system
which allows 24/7 access to a number of software
applications from virtually any computer with an
Internet connection, on or off campus.

Slide 3

Section I. The SAS Windows Environment
Starting the SAS System

-- You can launch the SAS System by clicking first
the Start button, then clicking on All Programs,
followed by clicking on the program group
labeled SAS or The SAS System, and finally
clicking on SAS 9.3 (English).

-- If using the Virtual Desktop, you need only to log
in on the computer with your HawkID, click on
Start, All Programs, then the version of SAS to
which you have access rights.

Slide 4

Section I. The SAS Windows Environment
Getting Familiar with the Terrain
-- SAS will open and automatically make available three windows: the enhanced

Editor, the Log, and the Output.
-- On the left hand side of the screen there is also a window labeled Explorer; this

window can be helpful with file management.

Slide 5

Section I. The SAS Windows Environment
The Enhanced Editor Window
-- The Enhanced Editor Window is where you write the SAS programs you wish to run.
-- A SAS program is a series of commands that will be read into SAS, manipulate data,

perform the required analysis, and output the results.

Slide 6

Section I. The SAS Windows Environment
The Enhanced Editor Window

-- The Enhanced Editor will give you color-coded procedures. statements., and
options that may help you find errors in your program before you even run it.

Slide 7

Section I. The SAS Windows Environment
The Log Window
-- When you run a SAS program important information about the run is automatically

displayed in the Log Window.
-- The SAS log contains a list of program commands and operations, as well as errors

that occurred during the program execution.
-- It is always a good idea to inspect the log window to confirm that the program ran

without errors.

Slide 8

Section I. The SAS Windows Environment
The Output Window
-- When the program executes without error, the results of the analyses are

displayed in the Output Window.
-- When the contents of the Output Window contains incorrect output, the

contents of the Output Window or any other active window can be quickly
cleared by placing the cursor in the window and selecting Ctrl-E.

Slide 9

Section I. The SAS Windows Environment
The Explorer Window
-- The Explorer window provides easy access to your saved SAS files and libraries.
-- Click on libraries, then the work folder, and this will show any datasets you have

read or created in SAS for the current session.
-- Double-click on the Libraries icon and SAS will show all the libraries that are

currently defined (Sashelp, Sasuser , Work) and any other library for a specific SAS
product (e.g., SAS /Graph Maps) or that has been user-defined.

-- The Computer icon gives you access to all shared drives /devices affiliated with your
computer.

Slide 10

Section I. The SAS Windows Environment
The Results Window
-- Provides a table of contents for your output
-- Lists each procedure that produces output in outline form and can be

expanded to show each part of the procedure output
-- This window can be very helpful when you have a lot of output and you

wish to view a particular section of the output.

Slide 11

Section II. Understanding SAS System Flow
Learning Objectives

At the conclusion of this presentation, participants should be
able to:
 Demonstrate knowledge and understanding of basic SAS

operations and procedures
 Develop a step-by-step approach to conducting a SAS

analysis

Slide 12

Section II. Understanding SAS System Flow
Becoming a SAS Programmer
-- SAS is best as a “write code-then-run” program; it is not a very good

“point-and-click” program.
-- To become proficient in the use of SAS you must learn how to write a

SAS program.
-- Writing a SAS program can be simple if you understand what is

required.

Slide 13

Section II. Understanding SAS System Flow
Writing a SAS Program

-- To write a SAS program requires familiarity with a special
scripting language. Writing a SAS program can be easy if
you understand the basic requirements or have prior
programming experience.

Slide 14

Section II. Understanding SAS System Flow
A Simple SAS Program Explained

-- Below is a table that provides some information about 10
subjects who are participants in a radiation exposure study.
Information includes Subject ID, Inoculation Date, Exposure
Level and Reaction Code:

Slide 15

Subject ID Inoculation Date Exposure Level Reaction Code

1234670 11-Sep-10 2000 Z

1234671 12-Sep-10 3000

1234672 13-Sep-10 2500 Z

1234673 14-Sep-10 3200 T

1234674 15-Sep-10 8000

1234675 16-Sep-10 2000 D

1234676 17-Sep-10 4000

1234677 18-Sep-10 6000 S

1234678 19-Sep-10 8000 T

1234679 20-Sep-10 2000 T

Section II. Understanding SAS System Flow
Data Value, Variable, Observation, and Dataset
Data Value -- the basic unit of information.
Variable -- a set of data values that describes a given attribute

makes up a variable. Each column of data values is a
variable. SAS variables are of two types --numeric and
character. Values of numeric variables can only be
numbers or a period (.) for missing data. Character
variables can be made up of letters and special
characters such as plus signs, dollar signs, colons and
percent signs, as well as numeric digits.

Observation -- all the data values associated with a case, a single
entity, a subject, an individual, a year, or a record
and so on, make up an observation. Each row of the
data table (or Matrix) represents one observation.

Dataset -- a dataset is a collection of data values usually arranged in
in a rectangular table (or matrix).

Slide 16

Section II. Understanding SAS System Flow
Rules for SAS Names
1. Many SAS names can be 32 characters long; others have

a maximum length of 8.
2. The first character must be a letter (A, B, C. . ., Z) or

underscore (_). Subsequent characters can be letters,
numeric digits (0, 1. . ., 9), or underscores.

3. You can use upper or lowercase letters. SAS processes
names as uppercase regardless of how you type them.

4. Blanks cannot appear in SAS names.
5. Special characters, except for the underscore, are not

allowed. In file reference, you can use the dollar sign ($),
pound sign (#), and at sign (@).

6. SAS reserves a few names for automatic variables and
variable lists. For example, _N_ and _ERROR_.

Slide 17

Section II. Understanding SAS System Flow
Rules for SAS Statements

1. SAS statements may begin in any column of the line.
2. SAS statements must end with a semicolon (;).
3. Some SAS statements may consist of more than one line.
4. Multiple SAS statements may appear on a single line.
5. One or more blanks should be placed between items in

SAS statements. If the items are special characters such
as '=', '+', '$', the blanks are not necessary.

Slide 18

Section II. Understanding SAS System Flow
Required Structural Components

-- Every SAS program will have at least two parts:

-- reads the data from the raw data file where it
has been stored into the program and carries out any
variable manipulation(s) that have been requested.

-- performs the particular analyses that have
been selected.

-- A SAS program may have more than one DATA step and
more than one PROC step.

-- SAS does not work directly on the original data file; the
PROC step uses data that are stored in a SAS (.sas) data set
created by the DATA step.

Slide 19

Section III. Getting Data into SAS
Learning Objectives

At the conclusion of this presentation, participants should be
able to:
 Demonstrate knowledge and understanding of how to

read data into SAS
 Provide an operational view of how SAS uses DATA, INFILE,

and INPUT statements to perform data selection
 Characterize the basic structural components of the DATA

and PROC steps.

Slide 20

Section III. Getting Data into SAS
The SAS DATA Step

-- The DATA step starts with the keyword DATA followed by the name that
you wish to assign to a SAS data set.

-- The DATA step has as its sole function to read and modify data.
-- The DATA step can include DO loops, IF and IF-THEN/ELSE statements,

and an assortment of numeric and character functions.
-- DATA steps can also combine data sets by using concatenation and

match-merge operations.
-- A DATA step ends when SAS encounters a RUN statement or a new step

(marked by a DATA or PROC statement).
-- A typical SAS program starts with a DATA step to input or modify data

and then passes the data to the PROC step which analyzes the data,
performs utility functions, or prints reports; but that is certainly not the
only pattern for mixing DATA and PROC steps.

-- DATA steps execute line by line and observation by observation.

Slide 21

Section III. Getting Data into SAS
Reading Data into SAS

Slide 22

-- Most common raw data files are flat-files, where
each row contains all the data for a particular
case.

-- Raw data files are usually organized in variables
(columns) x cases (rows) format.

-- There may be a header line that contains variable
names that can be read or omitted.

-- Raw data files may be internal or external to the SAS
program.

Section III. Getting Data into SAS
Writing an INFILE Statement
-- The INFILE statement gives SAS the name and physical location of the file that

contains the data you wish to use.
-- The physical location must begin with the root directory and include

specification of each level [folder] required to reach the desired file.
-- SAS 9.3 can accommodate the long folder names often used to organize files.
-- The INFILE statement follows the DATA statement and must precede the INPUT

statement.
-- In some operating environments, SAS assumes data files have a maximum

record [number of characters, including spaces, in a data line] length of 256. If
SAS is not reading all of your data, you can add the LRECL= option to the INFILE
statement to specify a record length at least as long as the longest record in
your date file.

-- Check the SAS log window to see if the record length is sufficient to read all
your data.

Slide 23

Section III. Getting Data into SAS
Writing an INPUT Statement
-- The INPUT statement specifies the location of each variable in the raw

data set.
-- The INPUT statement begins with the word INPUT followed by the names of

the variables in the data set in the order in which they appear.
-- The INPUT statement allows you to read data in one of four formats:

-- The List format requires at least one space between each data value.
-- The $ indicates that the data value is character.
-- The Column format does not require spaces between data values, missing

values can be left blank, character data can have embedded spaces,
and you can skip unwanted variables. <<Preferred Format>>

-- The Informat format name ends with a period (.) but it is not a requirement.

Slide 24

Section III. Getting Data into SAS
Using a CARDS or DATALINES Statement
-- Another option is to type or paste your data set directly into the SAS editor.
-- This works best when you have a small data set (25 lines or less).
-- Often used when testing SAS program on a data subset of a large file.
-- Use the CARDS or DEATALINES statement to inform SAS that your data is

internal rather than external.
-- The DATALINES statement must be the last statement in the DATA Step.
-- It is very import for the last semicolon to appear on the next line after all

your data has been listed. It you forget it, your last observation could be
deleted because SAS reads all characters as data until it encounters a
semicolon (;).

Slide 25

Section III. Getting Data into SAS
Importing Data from External Sources

-- In SAS it is possible to import data from other sources
such as Excel, Access, Word, etc.

-- Data values can be space, comma, or tab
delimited.

-- SAS provides an Import Wizard that takes you step-
by-step through the process.

-- From any SAS window, you can open the file menu in
the main menu bar and select IMPORT DATA.

-- The imported data can be saved in a SAS Work
library or a SAS permanent library.

Slide 26

Section III. Getting Data into SAS
Handling Missing Data
-- Whenever SAS encounters an invalid or blank value in a data field, the

value is defined as missing.
-- In SAS missing numeric data are represented by a single period (.) and

missing character data are represented by blanks in the data field.
-- When writing recoding statements in the DATA step, use a period to refer

to missing numeric values. For example, if you want to recode missing
values in the variable FAT to the value 99 you would write the following IF-
THEN statement:

-- When you want to assign certain characters to represent special missing
values for all numeric variables you can use the MISSING statement. The
missing values can be any letter in the alphabet or an underscore. For
example, the values ‘a’ and ‘b’ will be interpreted as special missing
values for every numeric variable in the data set if you include the
following statement:

Slide 27

Section III. Getting Data into SAS
The SAS Proc Step
-- Each SAS procedure (or PROC) has unique characteristics and elements

but many are shared as well. Although statements and options vary from
one PROC to another, the basic PROC structure is something like the
following:

-- SAS procedures begin with the keyword PROC which signals to the SAS
system that a “canned” program is being launched.

-- Once the name of a PROC is specified, you may then specify one or more
options available within the PROC, and in any order.

-- The DATA= option informs the SAS system what data set is to be used as
input to the PROC. If omitted, SAS automatically defaults to the most
recently created data set, which may not be the most recent one used.

Slide 28

PROC ________ DATA=_______ _;
TITLE ________________________ _;
FOOTNOTE ___________________ ;
BY ___________________________ ;
LABEL ________________________ ;
FORMAT ______________________;
RUN; <and/or> QUIT;

Section III. Getting Data into SAS
PROC Syntax Commonalities

-- There are syntax rules in effect when learning to write SAS procedure
codes.

-- All PROCs being with a procedure name followed by procedure
options; statements that define the PROC are followed by statement
options.

-- Variables are listed in the order in which they are executed.
-- Dependent variables are listed first followed by independent variables

which are sometimes preceded by a key word like BY or WITH.
-- Interaction effects between variables can be requested using a vertical

(|) symbol or an asterisk (*).
-- The CLASS or CLASSES statement always appears before the MODEL

statement in the ANOVA or MANOVA procedures.
-- If you omit the data = command in the PROC statement, SAS will use

the last data set created in the Data step.

Slide 29

Section III. Getting Data into SAS
PROC Statements and Options
-- PROC statements are commands nested within a procedure that tells SAS

what operations to perform and in some cases allows you to make your
analysis more specific.

-- Some PROC statements are necessary while others are non-compulsory.
-- Options are commands that further describe a statement and in some

cases may also further describe a procedure.
-- The SAS language has three basic types of options: system options,

statement options, and data set options.
-- System options (identified by OPTIONS statements) appear in the DATA

step and usually stay in effect for the duration of the session. They are
usually placed in the first line of the program so you can quickly see what
options are in effect.

-- Statement options appear in individual statements and influence how SAS
runs a particular DATA or PROC step.

-- Data set options affect only how SAS reads or writes an individual data set.

Slide 30

Section III. Getting Data into SAS
PROC PRINT
Application:

View the observations in a SAS data set
Syntax:

Discussion:
PROC PRINT allows you to print data generated by another SAS
procedure with more control over the output variables and layout.

Slide 31

Section III. Getting Data into SAS
PROC UNIVARIATE

Slide 32

Application:
Calculates descriptive statistics, particularly details on data distribution

Syntax:

Discussion:
PROC UNIVARIATE produces output similar to PROC MEANS except it
provides a larger number of descriptive statistics. As with PROC MEAN,
analysis can be performed using a numeric or character categorical
variable in a CLASS statement. This produces the descriptive statistics by
subgroups.

Section III. Getting Data into SAS
PROC FREQ

Slide 33

Application:
Calculates frequency table for the values of a numeric or character
variable and cross tabulation of two or more variables in a data set

Syntax:

Discussion:
In its simplest form PROC FREQ produces a one-way frequency table. To
produce a cross tabulation table for two or more variables you will need
to specify the variable names separated by an asterisk (*).

Section III. Getting Data into SAS
Creating a Permanent SAS Data Set
-- A SAS data set can be created as either temporary or permanent. A temporary

SAS data set is one that exists only during the current session and is automatically
erased by SAS when the session ends. A permanent SAS data set remains after the
session ends and can be used again in subsequent sessions.

-- If you plan to use a SAS data set more than once it is more efficient to save it as a
permanent SAS data set.

-- Permanent SAS data sets are saved in a library using a library reference (libref)
location defined by a LIBNAME statement.

-- The libref can change but the program must point to the same library and
member name.

Slide 34

Section III. Getting Data into SAS
Important Programming Tips

-- All statements must end in a semi-colon (;).
-- Major commands appear in dark blue and begin at the

left margin.
-- Subcommands appear in royal blue and are indented.
-- A blank line appears after the DATA step and after each

PROC step.
-- Title statements can be added but the title must be

enclosed in quotation marks; titles appear in purple in the
Enhanced Editor.

-- All SAS programs running in Windows environment must
end with RUN statement.

Slide 35

Section IV. Submitting a Program in SAS
Learning Objectives

At the conclusion of this presentation, participants should be
able to:
 Demonstrate knowledge and understanding of how to

submit a SAS program for processing
 Recognize the procedures SAS engages in dataset

selection
 Identify and correct common SAS errors

Slide 36

Section IV. Submitting a Program in SAS
Saving and Running SAS Programs

-- To save the contents of any window to a file, under the file menu
in the desired window click on SAVE AS…, type in or click on
where you want to save it, name the file and click OK.

-- Remember to SAVE the program whenever changes are made.
-- SAS puts an asterisk after the file name in the Editor window when

any changes have been made.
-- SAS does not save the program unless it is told to save it.
-- To run the program click on the “running person” button or

select the SUBMIT command under the RUN heading.

Slide 37

Section IV. Submitting a Program in SAS
Telling SAS which Dataset to Use

If you are working with multiple datasets that you have
output from multiple procedures (e.g., you have one
data set that SAS made from a PROC GLM run and
another from a PROC REG run , you must always name
the data set you wish to use; otherwise SAS will use the
dataset just previously used by default.

Slide 38

Section IV. Submitting a Program in SAS
Commenting Out SAS Commands
-- When running SAS it may be helpful to tell SAS to ignore parts of your

program when you do not need to see all of the output.
-- You can submit only a portion of your program by commenting out the

program code you do not want to execute.
-- The results and advantages are the same as submitting only a

highlighted portion but sometimes more efficient if you have large
chunks of code.

-- There are two ways to comment out SAS Commands:

(1) Single line -- place an asterisk (*) in front of the line (you already have
a semicolon in place as the terminator).

(2) Multiple lines -- place the symbols /* before the first line and the
symbols */ after the last line.

-- The part of the program that you have commented out will turn green,
alerting you that it will be ignored by SAS when the program executes.

Slide 39

Section IV. Submitting a Program in SAS
Examining the Results

-- As noted when a program executes, information is written
in the Log and Output Windows.

-- Check the Log Window to ensure the program ran as
expected without error.

-- If no errors have occurred, look at the output in sequential
order to gain a better grasp of the results.

-- If a hard copy is desired, the results can be printed as long
as the output file remains active.

-- The log and output files can be saved at any time before
exiting the SAS program.

-- The log file is given a .log extension name and the output
file is given a .lis (stands for “listing”)extension name.

Slide 40

Section IV. Submitting a Program in SAS
Correcting SAS Errors

-- It is important to examine your data for errors or inconsistencies in
each response set, especially the data you are planning to use in
your analysis.

-- Even data from reliable sources can have errors.
-- SAS procedures can be used to help detect data errors.

For example, PROC FREQ can be used to check categorical
variables to make sure only expected values are present. PROC
MEAN and PROC UNIVARIATE can be used to make sure the
minimum and maximum values of a variable fall within the
expected range.

-- Within SAS you can also use IF-THEN/ELSE statements to create
flags that alert you to inconsistencies or possible coding problems.

-- If problems in the data set are identified, you need to document
each instance carefully before making any coding change.

Slide 41

Section IV. Submitting a Program in SAS
Common SAS Programming Errors
1. No semicolon at the end of a statement
2. Missing or mismatched quotation marks on title(s)
3. Misspelling a variable name, proc, statement or option
4. Neglecting to sort data prior to using a BY statement
5. Ambiguous IF/THEN statement(s) that do not produce the desired results
6. Path to the data file location (INFILE statement) is incorrectly specified
7. Using the letter ‘o’ when you mean the number 0 (zero) or vice versa
8. Forgetting to specify that a variable is character (SAS assumes every

variable is numeric unless it sees a $ sign)
9. Incorrect column specifications on INPUT statement producing

embedded spaces in numeric data
10. Missing data not marked with a period on list-style input causing SAS to

read the next data value
11. Merging data sets that are not sorted in the right order
12. INPUT statement reads past the end of a line

Slide 42

Section IV. Submitting a Program in SAS
Using the Enhanced Editor to Find Errors

-- One big advantage of the PC SAS System is the automatic
color coding provided by the Enhanced Editor.

-- The color coding alerts you immediately when some of the
more common SAS programming errors occur.

-- A common mistake occurs when the programmer forgets
to close the quotation marks around a title; if a command
appears in purple unexpectedly, look for a missing
quotation mark.

-- Other errors, such as spelling errors, often appear in red.
-- If you misspell a known SAS word or command , SAS will

alert you; it will not, however, correct you if you misspell a
variable name or other user defined word.

Slide 43

Section IV. Submitting a Program in SAS
Using the Log File to Find Errors

-- Check the SAS log for three types of messages about the run:
1. Errors (in red)

Usually the result of a syntax or spelling mistake. The location of the
error is easily found because it is underlined, but it is not necessarily
the source of the error (this could be earlier in the program).

2. Warnings (in green)
The program still executes with warnings but SAS might have done
something you did not want it to do. Read any warnings carefully
and make sure you know what they are about and that you agree
with them.

3. Notes (in blue)
Sometimes just a piece of information; other times an indicator of a
problem. Read all notes carefully.

Slide 44

Section IV. Submitting a Program in SAS
Correcting SAS Errors Checklist
 Read the SAS Log

The log has a wealth of information about your program that may be helpful in
finding the source of your errors.

 Test each part of the program
Increase your program efficiency by making sure each part of the program works
before moving on to the next part.

 Test program using small data sets
Use options OBS=n (tells SAS to stop reading data at observation n) or FIRSTOBS=n
(tells SAS to start reading data at observation n) in a DATA or PROC step to select
subset of the full data set (timesaving if you have a large amount of data).

 Be observant of the colors in your program
The Enhanced Editor color codes your program statements as you write, making it
easy to discover missing semicolons etc because the rest of your program will
appear in the wrong colors.

 Make program errors easier to detect
Put only one SAS statement on each line and use indentation to show the
different parts of the program.

Slide 45

Section IV. Submitting a Program in SAS
Saving SAS Files

If you want to save the work you’ve done in a session, you’ll need to
save the contents of each window separately. Usually, you only
need to save the program; you can always run the program to
reproduce the log and output. To save a program file, you’ll need
first to make sure the Enhanced Editor is the active window, then go
to file and select the SAVE command. Similarly, you can save a log
file when a Log window is active, or an output file when the Output
window is active line and use indentation to show the different parts
of the program.

Slide 46

Section IV. Submitting A Program in SAS
Exporting SAS Files

-- Exporting a SAS data set to Excel, Access, SPSS, or other software
program is the opposite procedure of the import process.

-- SAS provides an Export Wizard that takes you step-by-step through the
process.
Step 1. Choose the library and member name for the data set that

you want to export
Step 2. Choose the type of file you want to create
Step 3. Choose the location (directory path) where you want to save

the exported data
Step 4. Choose whether you wish to save the programming

statements that are generated by the Export Wizard
-- If you choose not to use the Wizard, you can also create a SAS export

file using PROC EXPORT statements.

Slide 47

Section IV. Submitting a Program in SAS
SAS Help and Other Resources
-- SAS help is available from the SAS Institute at http://support.sas.com .
-- Local SAS help is also available:

If you are associated with the Colleges of Medicine, Dentistry, Nursing, or
Pharmacy, you can also get assistance from the Biostatistics Consulting Center at
http://www.public-health.uiowa,edu/biostat/biocon.html.
If you are affiliated with the College of Education, you can get help from the
Statistical Outreach Center at http://www.education.uiowa.edu/StatOutreach/.

-- A really excellent source of information on SAS software is The Little SAS Book: A
Primer by Lora D. Delwiche and Susan J. Slaughter (3rd, 4th or 5th Edition). All
editions are available online for limited preview at http://books.google.com. You
can purchase new and/or used copies of each edition from Amazon at
http://www.amazon.com/books-used-books-textbooks/.

-- For a list of useful SAS Web links check out the Michael Davis discussion at
www.bassettconsulting.com/Useful_SAS_links_PhilaSUG.ppt.

-- For SAS coding tips/techniques go to http://www.sconsig.com.sastip.htm.
-- For a LISTSERV based world-wide SAS discussion group that is always open for

discussion check out SAS-L at http://listserv.uga.edu/archives/sas-l.html.

Slide 48

http://support.sas.com/
http://www.public-health.uiowa,edu/biostat/biocon.html
http://www.education.uiowa.edu/StatOutreach/
http://books.google.com/
http://www.amazon.com/books-used-books-textbooks/
http://www.bassettconsulting.com/Useful_SAS_links_PhilaSUG.ppt
http://www.sconsig.com.sastip.htm/
http://listserv.uga.edu/archives/sas-l.html

	THE UNIVERSITY OF IOWA� �Introduction to SAS Programming
	Section I. The SAS Windows Environment Learning Objectives
	Section I. The SAS Windows Environment�SAS Access at The University of Iowa
	Section I. The SAS Windows Environment Starting the SAS System
	Section I. The SAS Windows Environment �Getting Familiar with the Terrain
	Section I. The SAS Windows Environment �The Enhanced Editor Window
	Section I. The SAS Windows Environment �The Enhanced Editor Window
	Section I. The SAS Windows Environment �The Log Window
	Section I. The SAS Windows Environment �The Output Window
	Section I. The SAS Windows Environment �The Explorer Window
	Section I. The SAS Windows Environment �The Results Window
	Section II. Understanding SAS System Flow�Learning Objectives
	Section II. Understanding SAS System Flow�Becoming a SAS Programmer
	Section II. Understanding SAS System Flow�Writing a SAS Program
	Section II. Understanding SAS System Flow�A Simple SAS Program Explained
	Section II. Understanding SAS System Flow�Data Value, Variable, Observation, and Dataset
	Section II. Understanding SAS System Flow�Rules for SAS Names
	Section II. Understanding SAS System Flow�Rules for SAS Statements
	Section II. Understanding SAS System Flow �Required Structural Components
	Section III. Getting Data into SAS�Learning Objectives
	Section III. Getting Data into SAS �The SAS DATA Step
	Section III. Getting Data into SAS �Reading Data into SAS
	Section III. Getting Data into SAS �Writing an INFILE Statement
	Section III. Getting Data into SAS �Writing an INPUT Statement
	Section III. Getting Data into SAS �Using a CARDS or DATALINES Statement
	Section III. Getting Data into SAS �Importing Data from External Sources
	Section III. Getting Data into SAS Handling Missing Data
	Section III. Getting Data into SAS �The SAS Proc Step
	Section III. Getting Data into SAS �PROC Syntax Commonalities
	Section III. Getting Data into SAS �PROC Statements and Options
	Section III. Getting Data into SAS �PROC PRINT
	Section III. Getting Data into SAS �PROC UNIVARIATE
	Section III. Getting Data into SAS �PROC FREQ
	Section III. Getting Data into SAS �Creating a Permanent SAS Data Set
	Section III. Getting Data into SAS �Important Programming Tips
	Section IV. Submitting a Program in SAS Learning Objectives
	Section IV. Submitting a Program in SAS �Saving and Running SAS Programs
	Section IV. Submitting a Program in SAS �Telling SAS which Dataset to Use
	Section IV. Submitting a Program in SAS �Commenting Out SAS Commands
	Section IV. Submitting a Program in SAS �Examining the Results
	Section IV. Submitting a Program in SAS �Correcting SAS Errors
	Section IV. Submitting a Program in SAS�Common SAS Programming Errors
	Section IV. Submitting a Program in SAS �Using the Enhanced Editor to Find Errors
	Section IV. Submitting a Program in SAS � Using the Log File to Find Errors
	Section IV. Submitting a Program in SAS�Correcting SAS Errors Checklist
	Section IV. Submitting a Program in SAS�Saving SAS Files
	Section IV. Submitting A Program in SAS�Exporting SAS Files
	Section IV. Submitting a Program in SAS �SAS Help and Other Resources

