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Quantile regression brings the familiar conceptof a percentile
into the framework of linear models

Goal
Interpretability and accurate prediction

Vi= Po+ Bixin+ - +Bpxipt+ €, i=1..,n

Outline

= Basic concepts
= Fitting and building quantile regression models
= Application to risk management

= Application to ranking student exam performance



Basic Concepts of Quantile Regression



How do you fit a regression model when your data
look like this?
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Standard linear regression assumes a constant variance,
which is often not the case ...
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... and applying a preliminary log transformation does not
necessarily stabilize the variance
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Regression models for percentiles can capture the entire
conditional distribution
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Statisticians use the term quantile in place of percentile,
but they have the same meaning ...
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... and the Greek symbol T denotes the quantile level, whichis the
probability level associated with the quantileor percentile
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How does quantile regression compare with standard linear regression?

Linear Regression

Quantile Regression

Predicts conditional mean
Applies with limited n
Assumes normality

Is sensitive to outliers

Is computationally inexpensive

Predicts conditional distribution
Needs sufficient data in tails

Is distribution agnostic

Is robust to outliers

Is computationally intensive




Fitting Quantile Regression Models



The coefficient estimates for standard regression
minimize a sum of squares

The regression model for the average response is
EQi)= Bo+ Bixin+ = +fpxip, 1=1..m

and the ;s are estimated as

arg min zn (yi —(Bo + xu B+ = +xp ﬁp))z

ﬁo,..., ﬁp i=1



In contrast, the coefficient estimates for quantile regression
minimize a sum of “check losses”

The regression model for the tth quantile of the response s

Qr(yi) - BO(T) + ﬂl(r)xil + o +:8p(r)xip ) [ = 1,...,7’l
and the f,(7)’s are estimated as

n
arg minzl P+ (yi - (,30 + X1+ 0 Xip ﬁp))
j=

Bov Bp L=i=1

where p.(r) = T max(0, r) + (1 - 1) max(0, —r)

For each level 1, there is a distinct set of regression coefficients




The QUANTREG procedure fits quantile regression models and
performs statistical inference

Example
Model the 10th, 50th, and 90th percentiles of customer lifetime value (CLV)

Goal

Target customers with low, medium, and high value after adjusting for 15
covariates, such as maximum balance and average overdraft

proc quantreg data=CLV ci=sparsity;
model CLV = X1-X15 / quantile = 0.1 0.5 0.9;
run;



Quantile regression produces a distinct set of parameter estimates and
predictions for each quantile level

10th Percent”e Parameter Estimates
Standard
Parameter DF Estimate Error 95% Confidence Limits tValue Pr:>|t|
Intercept 1 9.9046 0.0477 9.8109 99982 207.71 <0001
X1 1 0.8503 0.0428 0.7662 09343 1987 =0001
X2 1 0.9471 0.0367 0.8750 10193 2581 =0001
X3 1 0.9763 0.0397 0.6984 10543 2462 <0001
90th Percentile Parameter Estimates
Standard
Parameter DF Estimate Error 95% Confidence Limits tValue Pr> |t
Intercept 1 101007 0.1386 98283 103730 7287 <0001
X1 1 0.0191 0.1485 02726 0.3109 0.13 08975
X2 1 0.9539 0.1294 0.6996 1.2081 7.37 =.0001

X3 1 0.0721 0.1328 -0.1889 0.3332 054 05874



The QUANTREG procedure provides extensive features for
statistical inference

Simplex, interior point, and smooth algorithms for estimation

Sparsity and bootstrap resampling methods for confidence limits

Wald, likelihood ratio, and rank-score tests

Quantile process regression, which fits a model for all tin (0,1)



Quantile process plots display the effects of predictors on

different parts of the responsedistribution
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Quantile process plots display the effects of predictors on
different parts of the responsedistribution

Parameter Estimate and 95% Confidence Limits
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Paneled process plots help you identify which predictors are
associated with different parts of the response distribution

Estimated Parameter by Quantile Level for CLV
With 95% Confidence Limits
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Building Quantile Regression Models




Example: Which variables differentiate high-performingstores from
low-performing stores?

Response: close rates for 500 stores

Candidate predictors
e Store descriptors (X1-X20)
 Promotion (P1-P6)
e Layout (L1-L6)

Approach
1. Build sparse regression models for the 10th, 50th, and 90th percentiles

2. Compare the variables selected for each model



The QUANTSELECT procedure selects effects in
qguantile regression models

Features
* Provides forward, backward, stepwise, and lasso selection methods
* Provides extensive control over the selection

e Builds models for specified quantiles or the entire quantile process

proc quantselect data=Store plots=Coefficients;
model Close Rate = X1-X20 L1-L6 P1-P6 /
quantile=0.1 0.5 0.9 selection=lasso(sh=3);
partition fraction(validate=0.3);

run,



Coefficient progression plots show how the model fit evolves during
variable selection

Coefficient Progression for Close_Rate
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The layout variablesL2, L3, and L5 are selected only in the model
for the 90th percentile of close rates

10th Percentile

Parameter DF

Intercept
X2

X4

X20

P1

P2

P3

P4

P5

1

Parameter Estimates
Standardized

Estimate
60097618
0953402
0.933705
0140895
0724145
0.783880
0.696274
0260641
0242147

Estimate
0
0.258498
0.245902
-0.035981
0190798
0211752
0.193163
0069442
0067135

50th Percentile

Parameter DF

Intercept
X2
X4
P3
P4
P5

1
1

Parameter Estimates

Standardized

Estimate
60.950579
1.508595
0710667
0.361047
0 669943
0544278

Estimate

0
0409029
0187168
0.100163
0178491
0.150902

90th Percentile

Parameter Estimates

Standardized
Parameter DF | Estimate Estimate
Intercept 1 61.079231 0
X2 1 0982776 0266463
X4 1 1118507 0294572
L2 1 1027725 0297930
L3 1 0859988 0240257
L5 1 0672210 0.186588
P5 1 0192967 0.053500




Quantile regression gives you insights that would be difficult to

obtain with standard regression methods

Parameter Estimate and 95% CI
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The syntax and features of the QUANTSELECT procedure are similar
to those of the GLMSELECT procedure

Models can contain main effects consisting of continuous and classification
variables, and their interactions

Models can contain constructed effects, such as splines

Each level of a CLASS variable can be treated as an individual effect

Data can be partitioned to avoid overfitting



Application to Risk Management



Quantile regression provides a robust approach for estimating
value at risk (VaR)

* VaR measures market risk by how much a portfolio can lose within a given
time period, for a confidence level (1 —1)

* VaR is a conditional quantile of future portfolio values
Prly,< =VaR, | Q,] =1

where Q,is the information at time t and {y,} is the series of financial returns

* Methods of measuring VaR include GARCH models, which estimate the
volatility of the portfolio and assume the returns are normally distributed



GARCH models have been applied to the weekly return rates of the
S&P 500 Index, which display skewness and heavy tails

S&P 500 Weekly Return Rates
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You can use PROC VARMAX to predictVaR with a GARCH(1,1) model,
which assumes normality ...

5% VaR Based on GARCH(1,1) Model and Normality Assumption
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... or you can use PROC QUANTREG to predict VaR by conditioning
on lagged standard errors estimated by PROC VARMAX

proc varmax data=SP500;
model Rate / p=1;
garch form=ccc subform=garch g=6;
output out=StdErr lead=1;
id date interval=week;
run;

proc quantreqg data=StdErr;
model Rate = stdl-std7 / quantile=0.05;
output out=qr p=VaR;
id date;

run;

Xiao, Guo, and Lam (2015)



Quantile regression offers robustnessin situations where
market returns display negative skewness and excess kurtosis

5% VaR Based on Quantile Regression and AR(1)-ARCH(7) Model
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Application to Ranking Student Exam Performance GSas



How would you rank two students, Mary and Michael, who
took the same college entrance exam?

 Mary scored 1948 points, and her quantile level is
Pr[ Score<1948 ] =0.9

Michael scored 1617 points, and his quantile level is
Pr[ Score<1617]=0.5

Now you learn that Mary is age 17 and Michael is age 12

To rank them, you need to determine their conditional quantile levels

Pr[ Score <1948 | Age = 17]
Pr[ Score<1617 | Age =12]



Where do Michael and Mary fall within the score distributionsfor
their age groups?
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What are Michael’s and Mary’s quantile levels based on the score
distributionsfor their age groups?

Score Data
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You can estimate the conditional distributions
by using quantile regression

1. Use PROC QUANTREG to fit a quantile regression model that predicts the
qguantiles for an extensive grid of levels, such as 0.01, 0.02, ..., 0.99

2. From the quantiles, estimate the conditional distributions of the response
for covariate values corresponding to specified observations

3. Compute the predicted quantile (percentile) levels from the distributions,
and use these to rank the observations

The QPRFIT macro, new in SAS/STAT® 14.2, implements all three steps




Begin by modeling the conditional quantiles of Score fora uniform
grid of quantile levels

Quantile Regression Analysis of Scores
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It is important to specify an appropriate model with terms that
capture the nonlinearityin the data

data Score;
set Score;

Age?2

Age3

Agelnv
run;

Age*Age;
Age2*Age;
1/Age;

proc quantreqg data=Score;
model Score = Age Age2 Age3 Agelnv /

quantile

0.10 to 0.90 by 0.1;

output out=ModelFit p=Predicted;

run,



Note that the shape of the conditional distribution for Score
differs with Age

Quantile Regression Analysis of Scores
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The QPRFIT macro uses the predicted quantiles to compute the conditional
distribution functions of Score for Age=12 and Age=17

Distribution Functions
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Evaluating the conditional distributions at the scores for Michael and Mary
provides their adjusted quantile levels

Distribution Functions
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How do Michael and Mary rank before and after
adjusting for their ages?

Obs Name  Score Age Mean Median Regression Sample
Quantile Quantile
Level Level

1 Michael 1617 12 97143 89345 0.93500  0.50075
2 Mary 1948 17 170994 1712.36 0.84851 0.90025



The QPRFIT macro fits a quantile regression modeland computes
adjusted quantiles for specified observations

data ScorelD;
Name='Michael'; output;
Name='Mary'; output;
run;

sgprFit (data=Score, depvar=Score,
indvar=Age Age2 Age3 AgelInv, onevar=Age,
nodes=99, iddata=ScorelD,
showPDFs=1, showdist=1)

The proceedings paper explains how to use the macro




The QPRFIT macro also estimates the probability density functions for
Age=12 and Age=17

Density Functions
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Five points to remember for using quantile regressionin your work

1. Quantile regression is versatile because it allows a general linear model
and does not assume a parametric distribution

2. Quantile regression estimates the entire conditional distribution and
allows its shape to depend on predictors

3. Quantile process plots reveal effects of predictors on different parts of
the response distribution

4. Quantile regression can predict quantile levels of observations while
adjusting for effects of covariates

5. The QUANTREG and QUANTSELECT procedures are powerful tools for
fitting and building models, even with large data
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