Writing cleaner and more
powerful SAS code using

macros

Patrick Breheny

Outline

1. Quick Review of Macro Basics
2. Working with Macro Strings

3. Getting More Out of Macros:
a} Program Control
b) Interfacing with Data

SAS Compilation (cont’d)

+ Code without Macros:

SAS Compilation Execution
Code Program ————+ Results

» Code with Macros:

SAS Macro S48
Code Procassing Dode Compilation Execution
—_— Re:
with without sults

Macros Flacros

Why Use Mact

Macros automaticaily generate >AS code

Macros allow you to make more dynamic,
complex, and generalizable SAS programs

+ Macros can greatly reduce the effort required to
read and write SAS Code

The Compilation of SAS Programs

= SAS code is compiled and executed alternately in
steps:

- For exampie, a data step will be compiled and executed,
then a procedure step will be compiied and executed
« IMPORTANT: Macros are resolved PRIOR to the
compilation and execution of the SAS code

Macro Code

= The two basic elements of macro code are macro
variables and macros. In SAS code:
— &name refers to a macro variable
— %name refers to a8 macra

* Macro code consists of these two elements and
their relationship to each other

+ Text without %’'s or &'s (called constant text) is
unaffected by macro processing

The Implicit Handling of Strings

» Because macros and macro variables can only be
assigned strings of text, string functions on
macro variables are handled implicitly:

- Assignment: No quotes are necessary around the value
of a macro variable (slet mac_var = Hello;}

Working with Macro Strings.

- Concatenation: survey_g&state concatenates &state with
“survey_"
» Most of the time, this is very convenient, but any
time you avoid giving explicit instructions,
computers may do something other than what

you want!
Concatenation Concatenation {(cont’d)
+ The expression survey_g&state is unambiguous, Suppose we wished to import data from a file
but what about &state_survey? 5 Called “survey_lA.xis"
= _

fput sucvay Latate;

survay IA proc import datafile="H:\Data\survey &etate.xls"

out=sirvey Esatate
replace;

fput Sstate survey;

WARNING: Apparent symbolic reference
STATE_SURVEY not resolved.
&state_survey

run;

doesn't work, but

- A period is the signal in SAS to end a macro B e rvey forata | y-tocare. -xia?
. . raplace;
variable name: runs apiacs
*put &state._survey;
does
IA_survey
Double vs. Single Quotes SAS Characters with Special Meaning
+ Suppose we wish to assign a macro variable a
2 string with semicolons, commas, or quotes
. ubl i = .
Double gquotes and single quotes affect macro Z . The macro function %str can be used, for

variables differently: . .
example, to pass an entire statement into a
prec import datafile='H:\Macro Workehop\survey Getate..xls' macro:

cut=survey Estate

raplace;
un;
¥macro reg(predictors, options):

ERAOR: Unable to import, file proc reg datamdataset;

H;\Macro Workshop\survey state,.xls does not exist. model cutcome = Gpredictors;

: i . &options
+ Note that macro variables inside single quotes are not rn;
resolved imand reg;

fregl{aga sex, Ystz (Btest age, age - sex / canprint;));

Evaluating Numeric Strings

- Remember, macro variables are strings, not
numeric quantities:

tlaet eum = 1+1;
sput Smum;

i+
+ The function %teval can be used to obtain the
(integer) numeric value of an expression
containing macro variables:

Getting More Out of Macros

flet total = taval {&pum);
sput itotal;

2

» Note: Floating point evaluations can be performed with
Yosysevalf

Program Control Conditional Statements

+ The most powerful feature of macros is their
ability to use conditional and iterative statements

« Data steps provide these same statements, but
their effect is limited to a single data step

- Conditional statements in macros work just like
those in data steps

%if (&state eg IA} Xthan Yput Iowa;

+ Program control through macros can extend velse ¥put Not Iows:

across multiple data steps and procedures

%do Blocks Tterative Statements

» Just as in data steps, compound statements are

» |terative macro statements will also be familiar to

H g, o, . B .
grouped using %do and %eend: = anyone who has used the data step versions:
¥if (&state eg TA) %then kdo i = 1 %to 10;
*do; tput Yeval (6ivs2);
‘put Icwa; -

kend;
iput Corn grows here;

tand; Note: %do...%while and %do...%untll statements are also

keloe %put Not Iowa; availabile

Macro Program Control Statements

« Macro program control statements are not valid
in open code

= They must be contained within macros

Macro “Arrays” (cont’d)

+ Instead, we must force the macro processor to
make rmultiple passes over our code:

&Entatesi

| 15t Pass
LatateZ

\ 2nd pass

AKX

Nesting Macro Calls

« As we just saw, it is often a good idea to nest
macro calls:

Z:a
:;52-5

fmacro a;
L3
imend a;

» It is not a good idea to nest macro definitions:

tmacro a;
EAS cods..
smacro b;
8AS code..
smend b;
SAS coda..
Smend a;

Macro “Arrays”

» Suppose we created a list of states:

¥let statel = AL;
tlet state2 = AK;

3laet state50 = WY;

+ If we were in the i iteration of a loop. how would
we access the it" member of the list?

fput Estatefi;

IA2

Example

i+ Suppose we wish to create a report by state of
county rankings for a number of categories:

fmacro raport;
%do i = 1 %to 50;
kdo 4 = 1 %to 25;
¥county sort{&&varkj,
state=Listateli,
order=descending) ;
Seand;
dand;
fmand report;

kraport;

+ When nesting macro calls, be careful to avoid variable
collisions:

! Nesting Macro Calls (cont’d)
=

fmacro print suma;

tdo 1 = I %to 1iB;

Yput $sumisl};
Tand;
¥mand;

macro sumin);
tlat current sume0;
%do L = 1 ¥co Seval(&n);
tlet current sum=gcurrant _sum +&l;
Sand;
taval {écurrant_sum}
Nimand ;

+ Scoping issues can be aveided by using %local to define
macro variables

Interfacing With Data

+ Suppose we submitted the following code to SAS:

data newdata;

sat survey IA;

klet AgeSq = Agets2;
run;

- What would happen?

How symput Works

+ Calling the symput routine pauses execution of the
data step and writes a data value to a macro
variable

« Syntax:
CALL SYMPUT('macro-variable’', data-variable);

< Both arguments to symput can be expressions

+ IMPORTANT: You CANNOT access a macro variable
within the same data step it is created

Example

- Suppose we want to compare two groups, but the preferred
method depends on sample size:

Smacro compara(dsn, class, cutoffa20);
data _mall ;
ast {den nobs=nobs;
call aymputx({'nobe’',ncbs) ;
atop;
Iun;
$1f {(fnobs < Scutoff} kthan %$do;
proc nparlwey datamidan;
class &class;
un;
hand;
Selsa Adg;
proc ttest datawidan;
clase Gclase;
an;
tand;
Avand compare;

Scoxpare (mydats,aga) ;

« Answer:

! Interfacing With Data (cont’d)

Aput EAguBq;
roo*+2

- Because macros are resolved prior to the
execution of a data step, special routines are
required for macros to communicate with data:
— symput puts data into a macro
— symget extracts data from a macro

symputx: A Better symput

» CALL SYMPUTX is a variant of SYMPUT introduced
in SAS 9 that has similar syntax, but handles the
input of numeric values better

« The following example illustrates the difference
between the two commands:

data _rmli :
call symput{'asymput’ 5)};
osll symputx('symputx',S);
ran;

sput]&symput|;
Sput | Esymputx] ;

| E|
15

How symget works

+ symget is much more straightforward:
data-variable = symget('macro-variabie’)

Putting it all Together

» As a final example, suppose we want to create a
list of indicator variables for the values of a
categorical variable in a data set

+ Note that if we don’'t know the values in
advance, we have to approach the problem in
two steps
1. Determine the new variables we are to create

2. Create a data set in which we assign values to the new
variables

Putting it all Together (cont’d)

(cont'd)...

data gdsn, ind;
set &desn;
%do i=1 %to VNeval (Gtot};
if {compress{&cat) ag "sedcat.ind&i") then &hbcat.indéi = 1:
alpe &Ghcat.indki = C;
Send;
run;
fmend make ind;

References

+ The SAS Macro Language Reference:
— http://support.sas.com/documentation/onlinedoc/91pdf/
index_912.html
+ Carpenter, Art. 2004. Carpenter’s Complete
Guide to the SAS® Macro Language, Second
Edition. Cary, NC: SAS Institute Inc.

Putting it all Together (cont’d)

: + We could approach the problem as follows:

Amacro sake_ind (dean,cat);
proc sort data=Cden cut=sorted;
by &cat;
run;
data _null_;
sat mortasd end=eof:
by Ecat;
if first, &eat then
da;
tot+l;
call symputx{“"icat.ind”|icompressitot),compress (Scat))
wnd;
if aof then call symputx{'toet', tot);
run;

{cont'd}...

Putting it all Together (cont’d)

Smare ind{sarvey IX city);
proc print datamsurvey IA ind:

Tun;

Cedar New
Obs County city 3ap Age Ames Rapids Albin
1 Story Anes 150 [2e] 1 G]
2 Linn Cedar Raplds 180 45 [H 1 o
3 Allabakeas New ALbin 1o 25 o ¢ 1
4 Story Ames 120 50 1] [«

