
Writing cleaner and more
powerful SAS code using

macros
~1'1;,:• ...

Patrick Breheny

I Outline

I
1 _ Quick Review of Macro Basics

2. Working with Macro Strings

3. Getting More Out of Macros:

a) Program Control

b) Interfacing with Data

I SAS Compilation (cont'd)

~
~ Code without Macros:

SAS Compilation

Code
P1<Jgrarn

Execution

Code with Macros:

Results

SAS
Code

Macro
Processing

S4S
Co:Je
;-;irJJC,ut
Mf!cms

Compilation Execution

with
Macros

Results

I WhyU"M'd

~

r~ Macros automatiCally generate ~A:::, code

Macros allow you to make more dynamic,

complex, and generalizable SAS programs

Macros can greatly reduce the effort required to

read and write SAS Code

The Compilation of SAS Programs

SAS code is compiled and executed alternately in

steps:

- For example, a data step will be compiled and executed,

then a procedure step will be compiled and executed

IMPORTANT: Macros are resolved PRIOR to the
compilation and execution of the SAS code

Macro Code

The two basic elements of macro code are macro
variables and macros. In SAS code:

- &name refers to a macro variable

- %name refers to a macro

Macro code consists of these two elements and

their relationship to each other

Text without %'s or &'s (called constant text) is

unaffected by macro processing

Working with Macro Strings

I Concatenation

~ The expression survey_&state is unambiguous,
·;c;..· but what about &state_survey?

%put aurvay &abate;
survey_IA -

%put &state aurvey;
WARNING: ApParent symbolic reference
STATE SURVEY not resolved.
&stat8_survey

A period is the signal in SAS to end a macro

variable name:

%put &atate._su.rvey;

IA_survey

I Double vs. Single Quotes

§

Double quotes and single quotes affect macro

variables differently:

pro<: import data.Cil-'H: \Ma=o Workahop\eurv•y_&etate, .xls'

riiOPl.aoe;

ERROR: Unable to t.port, file
H: \.aacro WOrkshop\survay_&state .• xla does not exiSt.

Note that macro variables inside single quotes are not

resolved

macro variables are handled implicitly:

- Assignment: No quotes are necessary around the value

of a macro variable (Uat mac_var = Hello;)

- Concatenation: survey_&state concatenates &state with
"survey~"

Most of the time, this is very convenient, but any

time you avoid giving explicit instructions,

computers may do something other than what

you want!

I_C_o_n_c_a_te_n_a_tl_· o_n-----'-(c_o_n_t_' d"") ____ _

Suppose we wished to import data from a file

l!\ll called "survey_IA.xls"

! proc iq:>ort data1"ila•"K: \Data\survay_,8t.ata.l<l.8~
out-.urvey 'state
replace; -

doesn't work, but

proc ~ort da'bt.file•"H:\DaU\survey &state .. xls"
out-.-urvey_,stata

does

I SAS Characters with Special Meaning

Suppose we wish to assign a macro variable a

!II
~
~

string with semicolons, commas, or quotes

The macro function %str can be used, for

example, to pass an entire statement into a

macro:

%macro req(predic:tors, optiona);
proe req d.abl-dataset;

model outcoma • 'predictors;
&option•

\mend reg;

\reg(aqa sex, \str(mtast aqe, age- •~ I eanprint;));

I_E_v_a_lu_a_tl_· n--'g=---N_urn __ e_ri_c_S_tn_._n-=g_s ___ _
Remember, macro variables are strings, not

numeric quantities:
,~ .. t .UIIl .. 1+1;

\put " ;

"'
The function %eva I can be used to obtain the

(integer) numeric value of an expression

containing macro variables:
'llet to'bll • -\av.d U;.,.,..);
'kput 'total;

2

Note: Floating point evaluations can be performed with

%sysevalf

I Pwgmm Control

=
~ The most powerful feature of macros is their

ability to use conditional and iterative statements

Data steps provide these same statements, but

their effect is limited to a single data step

Program control through macros can extend

across multiple data steps and procedures

I %do Blocks

~ Just as in data steps, compound statements are

grouped using o/odo and %end:

\if' (&.state eq tA) %then

ilido;

\put Iowa;

llsput Corn qrow. here;

%end;

%else ~t Not Iowa;

Getting More Out of Macros

Conditional Statements

Conditional statements in macros work just like

those in data steps

Uf (&atate eq IA) \:th.n \:pllt rova:

\:el.ae \put Not rova;

Iterative Statements

Iterative macro statements will also be familiar to

anyone who has used the data step versions;

\:do i • 1 \:to 10;

tput \:eval(5i**2);

\:end;

Note: %do ... %whi!e and %do ... %unti! statements are also

available

Macro Program Control Statements

Macro program control statements are not valid
in open code

They must be contained within macros

1_ .. · •. _.-•····~·.·.:.· .•. _M ___ ac __ r __ o __ ' __ 'Ar ___ r __ ay~s __ " __ (~c __ o __ n __ t' __ d)~------------
Instead, we must force the macro processor to

make muWple passes over our code:

55atate5i

1st Pass

5atate2

2nd Pass

I Nesting Macro Calls

;;m As we just saw, it is often a good idea to nest
3!:1

~
macro calls:

\maero a;
BAS code,,
BAS code ...

\mend a;

It is not a good idea to nest macro definitions:

lkmaero a;
BAS coda_.
bacro b;

BAS code. ..
\mend b;
BAS code ...

blend a;

I Macro "Arrays"
· ___ S_u_p_p_o_s_e_w __ e_c_r_e~at_e_d __ a_l_is_t_o_f_s_t_a_te_s_: __________ __

i
"-''

\:let atatel • AL;
\let atate2 • AK;

\:let atate50 • Wf;

If we were in the ith iteration of a loop. how would
we access the ith member of the list?

IA2

1-E-~-~-p-p_o=.~-:-:-e-w-is_h_t_o_cr_e_a-te_a_r_e_p_o_rt_b_y_st_a_t_e_o_f_
' county rankings for a number of categories:

%macro report;
\:Ito .i -]. \:to 50;

%do j -]. \:to 25;
\:county: .crt (5&var5j,

- atate-5£atate5i,
orde~ac.nd.ing) ;

\report;

1-N--:-h-:-~-· n-.-'=:C.;n-~--ma_ac_cr-:-~-a-1:-.-:-~-:-a-r:~~-~-,-~-:-:o-~C.:-v-a-r;a_b_l_e __ _
:§§: collisions:

"" ~
~::

tlu.cro p:.:int auma;
'lido i - 1 "ito 10;

'llput t;....,.(,i);

tend;
tm.nd;

'llmae:.:o SUIII(n) ;
'111at cur:.:ent .u.-0;
tdo i • 1 t~ taval (""') ;

\and;
taval(,currer>t BUia)

'-nd; -

Scoping issues can be avoided by using %local to define
macro variables

I Interfacing With Data
~

Suppose we submitted the following code to SAS:

data nevclata;
a at aurv.y_ IA;
\let AgeSq - Age**2;

What would happen?

I H::,::::,::~ ::~: ''"= ~·'~'oo m '"'
~ data step and writes a data value to a macro

variable

Syntax:

CALL SYMPUT ('macro- variable', data-variable) ;

Both arguments to symput can be expressions

IMPORTANT: You CANNOT access a macro variable

within the same data step it is created

I E::::: want to compare two groups. but the preferred

! .. ·._:_r_ .. ' method depends on sample size:
.·· ,.,..=<> ~ara(d8n, elaaa, cuto~f'-20);

data null ;
aat-'dan-noba-noba;
call aymputx('noba' ,nebs);
atop;

p:roe nparl•'-Y data.•.(;dan;
cl .. a ,(;elaaa;

='
'end;

proe ttaat data•IOdan;
c:laaa 'claaa;

=' 'II and;
t!Mmd compare;

1.:

Interfacing With Data (cont'd)

_ • Answer:
\p<lt~;

~~
~:c.;

Because macros are resolved prior to the

execution of a data step, special routines are

required for macros to communicate with data:

- symput puts data into a macro

- symget extracts data from a macro

symputx: A Better symput
CALL SYMPUTX is a variant of SYMPUT introduced
in SAS 9 that has similar syntax, but handles the

input of numeric values better

The following example illustrates the difference

between ~he two commands:

•

data null :
- caJ.l. .y~apUt('•ympu.t',5);

call •yq>Ut.z.C '•ymputz' ,5);

4<put 1 C.ymput 1 ;
tpv.t 15.ympub: I ;

I 51
151

How symget works

symget is much more straightforward:

data-variable~ symget('macro-variable)

I Putting it all Together
~ ____ A_s_a~fi~n_a_l_e_x_a_m_p-le~. ~su_p_p_o_s_e __ w_e_w __ a_n_t_t_o_c_r_e_a-te---a

list of indicator variables for the values of a

categorical variable in a data set

Note that if we don't know the values in
advance, we have to approach the problem in

two steps
1. Determine the new variables we are to create

2. Create a data set in which we assign values to the new

variables

I Putting it all Together (cont'd)

!§ (cont'd) ...

i

='

aet ~n;
-td.o i•1 \to lleval (&tot) ;

alae &&"cat. ind"i. • 0;
\and;

\mend aaka_ind;

I-R_e_£_e_r_e_n_c_e_s~---------------------------­
~.~ Theh SA

1
S
1

Macrrto Langua
1
dge Refe,re"nce

1
: ,. d

191
df/

- ttp: suppo .sas.com acumen a on on 1ne oc p
index_912.html

Carpenter. Art. 2004. Carpenter's Complete
Guide to the SAS® Macro Language, Second
Edition. Cary, NC: SAS Institute Inc.

1.,-~-:-:nn-c_ou:o::~d-i_:-p~-r-oa-:-~-=~o:.h:-t-~-:-:-e c.:...:-:-~-f~-~~-::._w_s :--

$ taacu:o ~a_ind(cbln,cat);
¥::~ proc:: .art data-&cbln out orted;

by ~t;

data _null_;
eat aort.-1 and-eoL;
by &cat;
if' f.irst. &cat than

"'" tot+l.;
call ~t.z.l~&cat.ind" 11 oc:apr .. a(tot) ,compraaa (Ceat) I;

•nd;
it •o:f th•n c:.al.l •YJ~~Nb(' tot' ,tot);

(cont'd) ...

Putting it all Together (cont'd)

___ .t.l:ld(~_U.,c:J.ty);

- pd.nt cl&ta•-=-y_xa._i.ad.;

='
Cedar ...

00. County City '" "' """ Rapids Albin

Story """ '" "' 0 0
Linn Cedar Rapid• "0 " ' 0
Alla•ak<><> H<>• Albin '" " 0 ' Story '"' " 0 0

