
Introduction to SAS
Fred Ullrich

Department of Health Management & Policy

College of Public Health

Find a seat and log into your computer using your HawkID

and password

…”a software suite

developed by SAS

Institute for advanced

analytics, multivariate

analyses, business

intelligence, data

management, and

predictive analytics.”

Overview

• Day 1

– Introduction to SAS

– Making Changes to Data in SAS

• Day 2

– Introduction to SAS Procedures

– ODS Graphics Designer

– Introduction to SAS EG

Uses

• Access and manage data across

multiple sources

• Generate reports and perform

analyses

Interfaces

• SAS Windowing Environment (SAS)

– Provides a full programming interface

• SAS Enterprise Guide (SAS EG)

– Provides a point-and-click interface with

menus and wizards to create code

Access at UI

• PC Installation

– Requires purchase of SAS license

Department licenses:
College of Business College of Nursing

College of Dentistry College of Pharmacy

College of Education College of Public Health

NADs (College of Engineering) Iowa Consortium of Substance Abuse (VP for Rsrch)

College of Liberal Arts and Sciences Public Policy (VP for Research)

• Virtual Desktop

– Provides access to a variety of programs

through web-based system

– Used on or off campus

Starting the SAS System

• Off campus

– virtualdesktop.uiowa.edu

– Requires installation of Citrix Receiver

software

• PC installed or on campus

– Start → All Programs → SAS → SAS 9.4

http://virtualdesktop.uiowa.edu/Citrix/VirtualDesktopWeb/

SAS

Output

It’s not magic… it’s a tool

Interface Windows

• Enhanced Editor

• Log

• Output or Results Viewer

• Explorer

• Results

Explorer

• Provides easy access to SAS files

and data sets

• Computer provides access to all

shared devices or drives

• Libraries contains all libraries

currently defined

Enhanced Editor

• Where you write your SAS programs

• A SAS program is a series of

commands to:

– Import and manipulate data

– Generate reports and perform analyses

– Output results

Log

• Information pertaining to the program

you’ve submitted is automatically

displayed in the log

• Contains a list of:

– Program commands and operations

– Notes, warnings and errors

Output or Results Viewer

• When the SAS program executes

without error, the results are displayed

in the Output or Results Viewer

• The window the results will be

displayed in will depend on the default

setting

Output or Results Viewer

• Output

• Results Viewer

Results

• Provides table of contents for output

• Lists each procedure in outline form

• Can be expanded to show each part

Obtain Data
Write or open

a program
Submit the
program

View log

View results

Debug or
modify the
program

Obtain Data
Write or open

a program
Submit the
program

View log

View results

Debug or
modify the
program

Becoming a SAS Programmer

• SAS is best as a “write code then run”

program

• To be proficient, you must learn how

to write a program

– Simple if you understand what is

required

My First Program

My House

North Park

Elementary

A Basic SAS Program
• Find data

• Read data

• “Clean” data

• Make output

Data

Step
Proc Step

A Basic SAS Program
• Find data

• Read data

• “Clean” data

• Make output

Creates and/or

modifies

SAS data sets

Pre-written

routines for

data analysis &

processing

Data (1)

Layout
• Columns = Variables

• Rows = Observations

Bill 101 55 165.10

Tom 156 35 132.56

Sue 204 125 115.89

Ann 245 78 155.25

Jill 397 32 112.90

Bob 456 44 118.21

Tim 678 67 156.20

Matt 875 95 134.00

Kay 941 88 122.45

Data (2)

Variables need names
• 1-32 characters

• Must start with a character or

underscore

– Subsequent characters can be

letters, numbers, or underscores

• No blanks or special characters

• Can use any case letters

• Are not case sensitive

Bill 101 55 165.10

Tom 156 35 132.56

Sue 204 125 115.89

Ann 245 78 155.25

Jill 397 32 112.90

Bob 456 44 118.21

Tim 678 67 156.20

Matt 875 95 134.00

Kay 941 88 122.45

fname id days wages

Data (3)

Data types
• Character

– Can contain any character (letters,

numbers, special characters, and

blanks)

– Range from 1-32,767 characters

• Numeric

– Numbers (decimal point and minus

sign)

Bill 101 55 165.10

Tom 156 35 132.56

Sue 204 125 115.89

Ann 245 78 155.25

Jill 397 32 112.90

Bob 456 44 118.21

Tim 678 67 156.20

Matt 875 95 134.00

Kay 941 88 122.45

fname id days wages

Data (4)

Data sources
• Internal

– Data embedded with a program

• External

– “Local”

• Excel, Access, delimited, text

– “Remote”

• Databases, servers, etc.

Bill 101 55 165.10

Tom 156 35 132.56

Sue 204 125 115.89

Ann 245 78 155.25

Jill 397 32 112.90

Bob 456 44 118.21

Tim 678 67 156.20

Matt 875 95 134.00

Kay 941 88 122.45

fname id days wages

Let’s Write a Program!

Bill 101 55 165.10

Tom 156 35 132.56

Sue 204 125 115.89

Ann 245 78 155.25

Jill 397 32 112.90

Bob 456 44 118.21

Tim 678 67 156.20

Matt 875 95 134.00

Kay 941 88 122.45

Let’s Write a Program!
data demo;

Bill 101 55 165.10

Tom 156 35 132.56

Sue 204 125 115.89

Ann 245 78 155.25

Jill 397 32 112.90

Bob 456 44 118.21

Tim 678 67 156.20

Matt 875 95 134.00

Kay 941 88 122.45

Use the “data”

statement to tell SAS

that you want to

create a dataset and

you want to name it

“demo”.

Let’s Write a Program!
data demo;

input fname $ id days wages;

Bill 101 55 165.10

Tom 156 35 132.56

Sue 204 125 115.89

Ann 245 78 155.25

Jill 397 32 112.90

Bob 456 44 118.21

Tim 678 67 156.20

Matt 875 95 134.00

Kay 941 88 122.45

Use the “input”

statement to tell SAS

how to read in each

line of the data file. This

is where you provide

variable names and

where you tell SAS the

type of each variable.

Let’s Write a Program!
data demo;

input fname $ id days wages;

datalines;

Bill 101 55 165.10

Tom 156 35 132.56

Sue 204 125 115.89

Ann 245 78 155.25

Jill 397 32 112.90

Bob 456 44 118.21

Tim 678 67 156.20

Matt 875 95 134.00

Kay 941 88 122.45

;

The “datalines”

statement tells SAS

that the next lines of

the program actually

contain data.

SAS will treat each line

as a new observation

until it encounters a

semi-colon (;)

Let’s Write a Program!
data demo;

input fname $ id days wages;

datalines;

Bill 101 55 165.10

Tom 156 35 132.56

Sue 204 125 115.89

Ann 245 78 155.25

Jill 397 32 112.90

Bob 456 44 118.21

Tim 678 67 156.20

Matt 875 95 134.00

Kay 941 88 122.45

;

run;

The “run” statement

isn’t always necessary,

but it’s a good practice

to tell SAS that this is

the end of the DATA

step or PROC step.

Let’s Write a Program!
data demo;

input fname $ id days wages;

cards;

Bill 101 55 165.10

Tom 156 35 132.56

Sue 204 125 115.89

Ann 245 78 155.25

Jill 397 32 112.90

Bob 456 44 118.21

Tim 678 67 156.20

Matt 875 95 134.00

Kay 941 88 122.45

;

run;

proc print;

run;

Now that our data is in

a SAS dataset, we can

run a simple PROC to

see what the data

looks like.

Again, the “run”

statement isn’t always

necessary, but it’s a

good practice to tell

SAS that this is the end

of the DATA step or

PROC step.

Obtain Data
Write or open

a program
Submit the
program

View log

View results

Debug or
modify the
program

Submitting the Program

• Can submit all or part of a program

• Click the “running man”

Results!

T

h

e

S

A

S

S

y

s

t

e

m

Obs fname id days wages

1 Bill 101 55 165.10

2 Tom 156 35 132.56

3 Sue 204 125 115.89

4 Ann 245 78 155.25

5 Jill 397 32 112.90

6 Bob 456 44 118.21

7 Tim 678 67 156.20

8 Matt 875 95 134.00

9 Kay 941 88 122.45

Obtain Data
Write or open

a program
Submit the
program

View log

View results

Debug or
modify the
program

NOTE: Copyright (c) 2002-2012 by SAS Institute Inc., Cary, NC, USA.
NOTE: SAS (r) Proprietary Software 9.4 (TS1M3)

 Licensed to UNIVERSITY OF IOWA - SFA T&R, Site 70086217.
NOTE: This session is executing on the X64_7PRO platform.

NOTE: Additional host information:

 X64_7PRO WIN 6.1.7601 Service Pack 1 Workstation

NOTE: SAS initialization used:
 real time 0.65 seconds
 cpu time 0.49 seconds

1 data demo;
2 input fname $ id days wages;
3 datalines;

NOTE: The data set WORK.DEMO has 9 observations and 4 variables.
NOTE: DATA statement used (Total process time):

 real time 0.01 seconds
 cpu time 0.01 seconds

13 ;
14 run;
15
16 proc print;
17 run;

NOTE: There were 9 observations read from the data set WORK.DEMO.
NOTE: PROCEDURE PRINT used (Total process time):

 real time 0.42 seconds
 cpu time 0.14 seconds

Log

Time to do some data fixing!

Assignment Statements
• Basic method for adding to or modifying a SAS

data set

• Has the form
 Variable=expression;

– Numeric constant

 Year=2015;

– Character constant;

 Study=“Heart”;

– Copy a variable

 Newvariable=Oldvariable;

Arithmetic Calculations

Operation Symbol Example

Addition + CholestAdjust=Cholesterol+5;

Subtraction - SystAdjust=Systolic-10;

Multiplication * Heightm=Height*0.0254;

Division / BPRatio=SystAdjust/DiastAdjust

Exponentiation ** Heightm2=Heightm**2

Let’s Write a Program!
data demo;

input fname $ id days wages;

year=2016;

totwages=wages*days;

cards;

Bill 101 55 165.10

Tom 156 35 132.56

~

Matt 875 95 134.00

Kay 941 88 122.45

;

run;

proc print;

run;

Create a new variable

named “year” and give

it a constant value of

2016.

Then create a new

variable named

“totwages” that is the

product of wages and

days.

BREAK

Structural Components

• Every program typically has

two parts:

– DATA step

• Reading data and variable

manipulations

– PROC step

• Generates descriptive information

and performs statistical analyses

data demo;

input fname $ id days wages;

cards;

Bill 101 55 165.10

Tom 156 35 132.56

Sue 204 125 115.89

Ann 245 78 155.25

Jill 397 32 112.90

Bob 456 44 118.21

Tim 678 67 156.20

Matt 875 95 134.00

Kay 941 88 122.45

;

run;

proc print;

run;

DATA Step

• Reads and modifies data

– Arithmetic calculations

– Recoding variables

– Combine data sets by
concatenation or merging

• Data steps execute line by
line and observation by
observation

data demo;

input fname $ id days wages;

cards;

Bill 101 55 165.10

Tom 156 35 132.56

Sue 204 125 115.89

Ann 245 78 155.25

Jill 397 32 112.90

Bob 456 44 118.21

Tim 678 67 156.20

Matt 875 95 134.00

Kay 941 88 122.45

;

run;

proc print;

run;

Structure Overview

SAS Data Step

data trial1;

infile 'C:\wagedata.txt';

input id days wages;

totwage=days*wages;

run;

101 55 165.10

156 35 132.56

204 125 115.89

245 78 155.25

397 32 112.90

456 44 118.21

678 67 156.20

875 95 134.00

941 88 122.45

input data

101 55 165.10 9080.5

Proc Step Output

output data

PROC Step

• Each procedure (PROC) has

unique characteristics

• There are lots and lots of

PROCs

• PROCs will be covered in

more detail tomorrow.

data demo;

input fname $ id days wages;

cards;

Bill 101 55 165.10

Tom 156 35 132.56

Sue 204 125 115.89

Ann 245 78 155.25

Jill 397 32 112.90

Bob 456 44 118.21

Tim 678 67 156.20

Matt 875 95 134.00

Kay 941 88 122.45

;

run;

proc print;

run;

Let’s Write another Program!

C,84,138,93,143

D,89,150,91,140

A,78,116,100,162

A,,,86,155

C,81,145,86,140

• Read in an “external” data file

– C:\SASClass\bp.csv

– Data on clinic and diastolic and

systolic blood pressure at initial and

follow-up visit.

• CSV: comma-separated values

– Common data format

– Easily imported/exported from Excel

data bp; Use the “data”

statement to tell SAS

that you want to

create a dataset and

you want to name it

“bp”.

C,84,138,93,143

D,89,150,91,140

A,78,116,100,162

A,,,86,155

C,81,145,86,140

Let’s Write another Program!

data bp;

infile ‘c:\sasclass\bp.csv’ dlm=‘,’;
Use the “infile”

statement to tell SAS

the name and location

of the external data

file. Also tell SAS that

the data values are

delimited with a

comma.

Let’s Write another Program!

C,84,138,93,143

D,89,150,91,140

A,78,116,100,162

A,,,86,155

C,81,145,86,140

data bp;

infile ‘c:\sasclass\bp.csv’ dlm=‘,’;

input clinic $ dbp1 sbp1 dbp2 sbp2;

Use the “input”

statement to tell SAS

how to read in each

line of the data file. This

is where you provide

variable names and

where you tell SAS the

type of each variable.

Let’s Write another Program!

C,84,138,93,143

D,89,150,91,140

A,78,116,100,162

A,,,86,155

C,81,145,86,140

data bp;

infile ‘c:\sasclass\bp.csv’ dlm=‘,’;

input clinic $ dbp1 sbp1 dbp2 sbp2;

run;

proc print;

run;

Again, the “run”

statement isn’t always

necessary, but it’s a

good practice to tell

SAS that this is the end

of the DATA step or

PROC step.

Now that our data is in

a SAS dataset, we can

run a simple PROC to

see what the data

looks like.

Let’s Write another Program!

C,84,138,93,143

D,89,150,91,140

A,78,116,100,162

A,,,86,155

C,81,145,86,140

Programs and Outputs and

Logs!

(oh my)

Missing Data

• Character variables “ ”

• Numeric variables .

Obs clinic dbp1 sbp1 dbp2 sbp2

1 C 84 138 93 143

2 D 89 150 91 140

3 78 116 100 162

4 A . . 86 155

Time to do some (more) data

fixing!

data bp;

infile ‘c:\sasclass\bp.csv’ dlm=‘,’;

input clinic $ dbp1 sbp1 dbp2 sbp2;

if clinic=‘ ‘ then clinic=‘B’;

if dbp2=. Then dbp2=60;

run;

proc print;

run;

Let’s Write another Program!

C,84,138,93,143

D,89,150,91,140

A,78,116,100,162

A,,,86,155

C,81,145,86,140

“Fix” the record with

the missing value for

clinic – set it to “B”

Correct the record

with the missing dbp2

variable.

“Libraries” and the Libname Statement

• General Format
– libname <name of library> "<folder location>";

• Example
– libname class "H:\SASUsersGroup\datasets\";

• Must submit a libname statement to create a library

reference

• Is a pointer to folder on your computer where the data

files are stored

• Short hand way of telling SAS where to look for SAS data

sets

Libname Rules

• 1-8 characters

• Must start with a letter

– Subsequent characters can be letters,

numbers or an underscore

• No spaces

data bp;

infile ‘c:\sasclass\bp.csv’ dlm=‘,’;

input clinic $ dbp1 sbp1 dbp2 sbp2;

if clinic=' ' then clinic='B';

if dbp2=. Then dbp2=60;

run;

proc print;

run;

libname ssd ‘h:\sas\’;

data ssd.bp;

 set bp;

run;

Use the “libname”

statement to create a

library name and to tell

SAS where to find that

library

Let’s Write more Program!

C,84,138,93,143

D,89,150,91,140

A,78,116,100,162

A,,,86,155

C,81,145,86,140

data bp;

infile ‘c:\sasclass\bp.csv’ dlm=‘,’;

input clinic $ dbp1 sbp1 dbp2 sbp2;

if clinic=' ' then clinic='B';

if dbp2=. Then dbp2=60;

run;

proc print;

run;

libname ssd ‘h:\sas\’;

data ssd.bp;

 set bp;

run;

Let’s Write more Program!

C,84,138,93,143

D,89,150,91,140

A,78,116,100,162

A,,,86,155

C,81,145,86,140

Tell SAS what name

you would like to give

your “permanent”

dataset. Note the two-

part name (beginning

with the library name).

data bp;

infile ‘c:\sasclass\bp.csv’ dlm=‘,’;

input clinic $ dbp1 sbp1 dbp2 sbp2;

if clinic=' ' then clinic='B';

if dbp2=. Then dbp2=60;

run;

proc print;

run;

libname ssd ‘h:\sas\’;

data ssd.bp;

 set bp;

run;

Let’s Write more Program!

C,84,138,93,143

D,89,150,91,140

A,78,116,100,162

A,,,86,155

C,81,145,86,140

Tell SAS what dataset

you would like to use

for the source of your

your “permanent”

dataset.

Rules for SAS Statements

• Begin and end in any column

• Must end with a semicolon (;)

• May consist of more than one line

• Multiple statements may appear on a
single line

• One or more blanks should be placed
between items

• Unquoted items can be any case

Enhanced Editor

• Color coded to help you detect errors

Log

• Notes
– Additional information; an indicator of a

problem

• Warnings
– Program still executes but possibly not the

way you expected

• Errors
– Usually the result of a syntax or spelling

error

Correcting Errors Checklist

• Read the Log

• Test each part of the program

• Test program using small data sets

• Be observant of the colors in your

program

Common Programming Errors

• No semicolon at the end of a

statement

• Missing or mismatched quotation

marks

• Misspellings

• Using the letter ‘o’ instead of number 0

Correcting DATA Errors

• Data entry errors

– Descriptive summaries

– Create flags to alert you of errors

• SAS coding errors

– Spot check data

Let’s Write (yet) another Program!

• Read in a SAS Dataset

– C:\SASclass\sample.sas7bdat

– Data on patients and clinical

characteristics.

– It’s already a SAS dataset –

somebody has already done a lot of

the work!

libname ssd ‘c:\sasclass\’; Use the “libname”

statement to tell SAS

to create a library

name and to tell SAS

where to find that

library

Let’s Write (yet) another Program!

libname ssd ‘c:\sasclass\’;

proc print data=ssd.sample;

run;

“LOOK!” A SAS

program that doesn’t

have a data step!

Use the “data=“ option

on the print proc to

tell SAS which dataset

you want to print.

Let’s Write (yet) another Program!

Time to do some (yet more) data

fixing!

libname ssd ‘c:\sasclass\’;

proc print data=ssd.sample;

run;

data stuff; Tell SAS that you want

to create a new

dataset and name it

“stuff”. Note, the one-

part name tells SAS

that this is a

temporary dataset.

Let’s Write (yet) another Program!

libname ssd ‘c:\sasclass\’;

proc print data=ssd.sample;

run;

data stuff;

 set ssd.sample;

Use the “set”

statement to tell SAS

the name of the

dataset that you want

to use as a “source”

for your new dataset.

Let’s Write (yet) another Program!

libname ssd ‘c:\sasclass\’;

proc print data=ssd.sample;

run;

data stuff;

 set ssd.sample;

if cholesterol=999 then cholesterol=.;
Use an assignment

statement to correct

the wacko values for

cholesterol.

Let’s Write (yet) another Program!

libname ssd ‘c:\sasclass\’;

proc print data=ssd.sample;

run;

data stuff;

 set ssd.sample;

if cholesterol=999 then cholesterol=.;

run;

proc print data=stuff;

run;

Use a “run” statement

to finish the data step.

Look at the new

dataset using a Proc

Print.

Let’s Write (yet) another Program!

Import/Export Data

 SAS can import data from, and export data to, many different formats

 MS-Excel

 MS-Access

 .csv

 SPSS

 Stata

 many others

 A variety of methods for importing/exporting

 Best approach depends on variety of factors

 Operating system (Linux, Windows, 32/64-bit)

 SAS version (9.2, 9.3, 32/64-bit)

 Originating/destination software (Excel, .csv, SPSS)

 Use the Wizard

 Be careful, pay attention

Import/Export Data (2)

Wizards!

Import/Export Data (3)

Import/Export Data (4)

Import/Export Data (5)

PROC IMPORT OUT= WORK.demo

DATAFILE= "H:\My Documents\SAS\UI SAS bootcamp\2016\demos\patient.xlsx"

 DBMS=EXCELCS REPLACE;

 RANGE="Sheet1$";

 SCANTEXT=YES;

 USEDATE=YES;

 SCANTIME=YES;

RUN;

Questions?

