SAS and Data Management

Kim Magee

Department of Biostatistics College of Public Health

Review of Previous Material

Review

INFILE statement

```
Name the dataset you are going to create data bp; infile 'c:\sas\bp.csv' dlm=','; Import the datafile input clinic $ dbp1 sbp1 dbp2 sbp2; Give the names of the variables(columns)
```

Indicates the variable in front of it is a character variable

Review (cont.)

- LIBNAME statemnt
- General Format

```
- libname <name of library> "<folder location>";
```

Example

SAS Help

Internal Help

Press "F1" to access Internal Help

Questions?

SAS Help

Online Help

http://support.sas.com/documentation/

SAS Product Documentation

Starting Points

- ▶ Product Index A-Z
- ▶ Programmer's Bookshelf

- What's New in SAS.
- ▶ Documentation by Title

Syntax Shortcuts

- ▶ Syntax Lookup 9.4 | 9.3
- ▶ SAS Procedures by Name and Product 9.4 | 9.3 | 9.2
- ▶ SAS Language Elements by Name, Product, and Category 9.4 | 9.3 | 9.2

Missing Data

- SAS puts "." in place of a Missing Value
- Arithmetic operations with a missing value will result in a missing return value
- In logical operations missing values are equal to other missing values
 - Missing values are less than non-missing values
 - e.g. when excluding missing data you can use the line below, assuming the value of your data is non-negative

```
data missing;
    set SSI.data;
    if AgeAtDeath < 0 ;
run;</pre>
```

Note: when exporting data with missing values to Excel, the missing values will show up as "." not blank

Formats

SAS Formats

Category	Description	
Character	instructs SAS to write character data values from character variables.	
Date and Time	instructs SAS to write data values from variables that represent dates, times, and datetimes.	
ISO 8601	instructs SAS to write date, time, and datetime values using the ISO 8601 standard.	
Numeric	instructs SAS to write numeric data values from numeric variables.	

SAS Format List

Formats (cont.)

- Letters are always character formats
- Numbers can be either numerical format or character format
 - ▶ Be careful when performing equations or merging data that they are in the correct format

Formats (cont.)

Double click the Column Header in your Data set to see Column Attributes

Character Format

Numerical Format

Numeric Expressions

Operators in Arithmetic Expressions

Operation	Symbol	Example
addition	+	x = y + z;
subtraction	-	x = y - z;
multiplication	*	x = y * z
division	/	x = y / z
exponentiation	**	x = y ** z

SAS Numeric Expressions

Numeric Expressions (cont.)

Exercise

Calculate BMI using Height and Weight

$$BMI = \frac{\text{(weight in kilograms)}}{\text{height in meters}^2}$$

Calculate number of years in the study

Numeric Expressions (cont.)

```
data numeric;
    set SSI.data;

Weight_kg = Weight * 0.45;
    Height_m2 = (Height * 0.025) **2;
    BMI = int(Weight_kg/Height_m2);
run;
```

Numeric Functions

SAS Function	Description
ABS(x)	x
EXP(x)	e^x
FACT(x)	x!
LOG(x)/LOG10(x)	ln(x)/log_10(x)
ROUND(x,unit)	Round x to nearest multiple of unit
Int(x)	Round x to nearest integer
SQRT(x)	\sqrt{x}
MAX(arg-1,arg-2,)	Maximum value of arguments
MIN(arg-1,arg-2,)	Minimum value of arguments
STD(arg-1,arg-2,)	Standard Deviation of arguments
MEAN(arg-1,arg-2,)	Mean of arguments
SUM(arg-1,arg-2,)	Sum of arguments
N((arg-1,arg-2,)	Counts the number of arguments

Numeric Functions (cont.)

Exercise

- Calculate the number of arguments in O1-O5 as O_count
- Calculate the sum of O1-O5 as P1
- Calculate the mean of O1-O5 as P2
- Find the minimum value of O1-O5 as P3
- Calculate In(O4) and round to the nearest tenth as P4

Numeric Functions (cont.)

```
data numeric;
    set SSI.data;
    Weight kg = Weight * 0.45;
    Height m2 = (\text{Height * 0.025})**2;
    BMI = int(Weight kg/Height m2);
    Years in study = AgeAtDeath - AgeAtStart;
    0 \text{ count} = n(01,02,03,04,05);
    P1 = sum(01,02,03,04,05);
    P2 = mean(01,02,03,04,05);
    P3 = min(01,02,03,04,05)
    P4 = round(log(O4), 0.1);
run:
```

If-Then/Else Statements

- Logical SAS expression
- ▶ Then: Statement that is executed if the expression is true
- ▶ Else: Statement that is executed if the expression is false
- ▶ If Then/Else : Statements are nested to produce a series of evaluations
 - Stops once a true statement is encountered
 - More computationally efficient than repeated if statements

If -Then/Else Statements (cont.)

```
data ifthen;
    set numeric;
    if BMI > 25 then BMI over = 1;
    else BMI over = 0;
    if BMI < 18.5 then BMI class = 1;</pre>
    else if 18.5 <= BMI < 25 then BMI class = 2;
/* if (BMI >= 18.5 and BMI < 25) then BMI class = 2;*/
    else if 25 <= BMI < 30 then BMI class = 3;</pre>
    else if BMI >= 30 then BMI_class = 4;
    else BMI class = 0;
run:
```

Do...End Statements

The DO Statement specifies a group of statements to be executed as a unit.

```
data DoEnd;
    set numeric;
    if A1 = 2 then do:
        B1 = A2*A3;
        B2 = abs(A5-A4);
        B3 = 6;
    end:
    else do:
        B1 = A1*A2;
        B2 = abs(A3-A5);
        B3 = 3;
    end:
run:
```

Working with Character Variables

- The Length Statement is a data step statement specifying the internal storage lengths of variables
- Length can only be set prior to the assignment of values
- Helpful when merging datasets
 - Variables need to be the same length
- Syntax: LENGTH variable-1 <\$>length ... variable-n <\$>length;
 - > \$: Specifies the variable is a character type
 - length: number of characters

Working with Character Variables (cont.)

Using the LENGTH Statement

level
Moderate
Moderate
Moderate
Low
Low
Moderate
Low
High
High

Without the **LENGTH** Statement

level Mod Mod Low Low Hod Hig

Working with Character Variables (cont.)

- Exercise
- Create 3 different levels for N1
 - \triangleright N1 = (1,2,3,4,5,6)

Working with Character Variables (cont.)

```
data character;
   set ssi.data;
   length level $8;

   if N1 in (1,2) then level = "Low";
   if N1 in (3,4) then level = "Moderate";
   if N1 in (5,6) then level = "High";

run;
```

Character Functions

SAS Function	Description
Upcase(str)/Lowercase(str)	Convert to uppercase/lowercase
Length(str)	Length excluding trailing blanks
Lengthc(str)	Length including trailing blanks
Strip(str)	Removes leading and trailing blanks
Tranwrd(str, target, replacement)	Replaces all occurrences
Catx(delimiter, srt-1, str-2,)	Concatenates variables separated by delimiter
Index(source, excerpt)	Searches sources for excerpt and returns position number
Scan(str,count)	Returns the nth character from string
Substr(str,position,n)	Returns n number of characters from str starting at position

SAS Character Functions

Character Functions (cont.)

- Exercise
- Change all titles "Mrs." to "Ms."
- Create variable Name with format "Last, First"
 - ► Hint: delimiters need "" around them
- Create variable AreaCode from TelephoneNumber
- Create variable State extracted from Address
- Create an all capitalized variable City

Character Functions (cont.)

```
data char_func;
    set ssi.data;

Title2=tranwrd(Title, "Mrs.", "Ms.");

Name = catx(', ', LastName, FirstName);

AreaCode = substr(TelephoneNumber, 1,3);

state = scan(address, 3, ',');
    city = upcase(scan(address, 2, ','));

run;
```

Date Variables

SAS Function	Description
DATE()/TODAY()	Returns todays date
DAY(x)	Returns day of month of date variable
MONTH(x)	Returns month of date variable
YEAR(x)	Returns year of date variable
WEEK(x)	Returns week of date variable
DATEPART(x)	Pulls date from Date-Time variable
TIMEPART(x)	Pulls time from Date-Time variable
'DDMMMYYYY'd	Creates date variable

SAS Date Functions

Date Variables (cont.)

- Formatting Date Variables
- Internal SAS dates are just a string of numbers.
 - 0 = 1Jan1960
 - Each day after 1Jan1960 adds 1
 - Each day before 1Jan1960 subtracts 1
- Formatting makes it easier to read
 - Use PUT() function to create new formatted variables

SAS Format	Description
Date9.	DDMMYYYY
Datetime.	DDMMYYYY:HH:MM:SS
Time.	HHH:MM:SS

SAS Date and Time Formats

Date Variables (cont.)

- Exercises
- Find today's date two different ways
- Find the current year
- Create HOUR, MINUTE, and Second variables
- Use variables created above to create a date-time variable, DTTIME
- Find TIME using DTTIME
- Format DTTIME, TIME, TODAY
- If the subject is still alive
 - calculate when they should have their next visit
 - ▶ 60 days from last visit
 - Calculate the number of days between LastContact and TODAY
 - ▶ Hint: Try using a DO loop!

Date Variables (cont.)

```
Data date:
    set ssi.data:
   Today = '16Aug2016'd;
   Today2 = date();
   year = year(Today);
    hour = 13;
   minute = 30;
    second = 05:
    DTtime = dhms(today, hour, minute, second);
    time = timepart(dttime);
    FormatDatetime = put(DTtime, datetime.);
    FormatDate = put(today, date9.);
    FormatTime = put(time, hhmm.);
    if status = 'Alive' then do;
        Nextvisit = put(LastContact + 60,date9.);
        TimeFromContact = Today - LastContact;
    end;
run;
```

Variable Labels

- Using a LABEL statement in SAS will permanently associate a label with a variable
- Syntax: LABEL variable-1=label-1 ... variable-n=label-n;

Variable Labels (cont.)

```
|data labels;
    set ssi.data;

Label DOB = 'Date of Birth' AgeAtStart = 'Age at Start of Study';
run;
```

Before Label

DOB	AgeAtStart
31MAY1928	52
29SEP1941	39
08JUL1929	51

After Label

Date of Birth	Age at Start of Study
31MAY1928	52
29SEP1941	39
08JUL1929	51

Sub-Setting Data

- Delete Statement
 - Use the delete statement to exclude subjects with certain observations
 - e.g. delete those with a missing value
- Output Statement
 - The output statement only includes observations that meet the criteria specified
 - ▶ e.g. only include females
 - You can also use the output statement to create individual datasets

```
data subset delete;
    set ssi.data:
    if AgeAtDeath = . then delete;
/* if missing(AgeAtDeath) then delete*/
run:
data subset_output;
    set ssi.data;
   if sex = 2 then output;
run :
data subset1 subset2 subset3 subset4:
    set ssi.data:
    if BloodType in ("O+", "O-") then output subset1;
    if BloodType = ("A+") then output subset2;
    if BloodType = ("B+") then output subset3;
    if BloodType = ("AB+") then output subset4;
run:
```

Sub-Setting Data (cont.)

DROP/KEEP Statement

- Use the DROP statement to get rid of unwanted variables
- Use the KEEP statement to keep only variables you want
- If you have a set of variables with same pre-fix that are numbered differently you can lump them all together using ":" rather than type all out separately

```
data subset_drop;
    set subset_output;

DROP Title Address ZipCode Occupation A: E:;
run;

data subset_keep;
    set subset_output;

KEEP Sex DOB AgeATStart Status;
run;
```

Exporting Data

Using the Export Wizard

- Select File » Export Data
- The window dialog box will appear
- Select your SAS library libref
 - ► Library: WORK
- Select the member of the library
 - Member: Export
- Click Next

- The Select Export Type dialog box will appear
- Select what data source you would like to export to
- Most common are *.xlsx, *.csv, and *.txt
 - We will export *.xlsx

- Click the Browse button to point to a folder where you want the data saved
 - ► e.g. save to your H:\ drive

- Enter File Name
- Be sure to scroll down to .xlsx file
 - Default is old version of Microsoft office
- Click Save
- Then click OK

- Assign a name to the exported table
 - This names the sheet in excel
- You can be done here and click Finish
- If you want to save the code click
 Next
- Assign a file directory where it will be saved and click Finish
 - It will save a file with code for Proc Export

Using Proc Export

DBMS= data-source-identifier

DBMS= specifies the type of external data source the EXPORT procedure creates. To export to a DBMS table, specify DBMS= using a supported database identifier. For example, DBMS=ACCESS spe Microsoft Access 2000, 2002, 2003, or 2007 database.

Note: Transcoding is not supported for DBMS=XLS. The output yields unpredictable results. Use DBMS=EXCEL as an alternative.

Data Source Identifier Summary

Data Source Identifier	Output Data Source	File Extension	
ACCESS Microsoft Access 2000, 2002, 2003, 2007, or 2010 table (using the LIBNAME statement)		.mdb	
ACCESS	Microsoft Access 2000, 2002, 2003, 2007, or 2010 table (using the Librative Statement)	.accdb	
ACCESSCS Microsoft Access table connecting remotely through PC Files Server		.mdb	
ACCESSOS	Microsoft Access table connecting remotely through the tries derver	.accdb	
CSV	delimited file (comma-separated values)	.csv	
DBF	dBASE 5.0, IV, III+, and III files	.dbf	
DBFMEMO	dBASE 5.0, IV, III+, and III files with memos	.dbf	
DBFWEWO	FoxPro and VisualPro with memos	.fpt	
DLM	delimited file (default delimiter is a blank)		
DTA	Stata file	.dta	
		.xls	
EXCEL	Excel 97, 2000, 2002, 2003, 2007 or 2010 workbook (using the LIBNAME statement)	.xlsb	
		.xlsx	
EXCEL4	Excel 4.0 workbook (using PROC DBLOAD)	.xls	
EXCEL5	Excel 5.0 or 7.0 (95) workbook (using PROC DBLOAD)	.xls	
EXCELCS Excel workbook connecting remotely through PC Files Server	.xls		
LACELOS	Excel workbook connecting remotely through to thies derver	.xlsb	
JMP	JMP files	.jmp	
PARADOX	Paradox DB files	.db	
PCFS	JMP files, Stata files, and SPSS files connecting remotely through PC Files Server	.jmp, .dta, .sav	
SAV	SPSS files, compressed and uncompressed binary files	.sav	
TAB	delimited file (tab-delimited values)	.txt	
WK1	Lotus 1-2-3 Release 2 spreadsheet	.wk1	
WK3	Lotus 1-2-3 Release 3 spreadsheet	.wk3	
WK4	Lotus 1-2-3 releases 4 and 5 spreadsheet	.wk4	
XLS	Excel 97, 2000, 2002, or 2003 spreadsheet (using file formats)		
ALS	Note: Transcoding is not supported for DBMS=XLS. The output yields unpredictable results. Use DBMS=EXCEL as an alternative.	.xls	

```
Using Proc Export (cont.)

proc export data=subset_keep
   outfile = 'H:\SSI Data.xlsx'
   dbms=xlsx
   replace;
run;

Using proc Export to subset data

proc export data=labels (where=(sex=1))
   outfile='H:\Femalelist.csv'
   dbms=csv
   replace;
run;
```

SAS Proc Export

Using ODS

- SAS Output Delivery System
- Gives flexibility in generating reports
- Great for printing graphs or plots

```
ods pdf file="H:\odsoutput.pdf";
proc print data = subset_keep;
    where AgeAtStart < 30;
run;
ods pdf close;</pre>
```