
Frequently Asked Questions (FAQs) About SAS Usage

Editorial Note: Many of these FAQs are provided courtesy of the University of Texas Statistical Support
Center. Although there are references in this document to SAS Version 8.2, the answers given are equally
applicable to SAS Version 9.1.3.

TABLE OF CONTENTS

CATCHING DATA ENTRY ERRORS WITH SAS .. 2
REMOVING DUPLICATE OBSERVATIONS FROM A DATASET USING SAS 2
SAS MISSING VA LUES .. 3
MEAN SUBSTITUTION FOR MISSING VALUES IN SAS ... 4
RECODING VARIABLE VALUES INTO MISSING VALUES IN SAS .. 5
READING MISSING DATA USING SAS .. 6
REPLACING MISSING DATA FROM A SECOND FILE ... 8
IDENTIFYING NONMA TCHES IN A SAS MATCH MERGE ... 9
SUMMING VARIABLES WITH MISSING DATA IN SAS ... 10
EXTRACTING CASES WITH A GIVEN STRING FROM SAS .. 11
USING AN ARRAY IN SAS TO DETECT MISSING VALUES .. 12
ONE-TO-MANY DATASET MERGING WITH SAS ... 13
USING THE SAS KEEP & DROP STATEMENTS ... 14
COMBINING MULTIPLE LINES INTO ONE USING SAS ... 15
FORMATTING SAS DATA .. 16
CREATING A SAS DATA SET FROM AN ASCII FILE ... 17

FILE RELATIONSHIPS IN SAS .. 20
BIBLIOGRAPHY .. 22

1

CATCHING DATA ENTRY ERRORS WITH SAS

Question:
How can I use SAS to check for data entry errors?

Answer:
PROC COMPARE compares two SAS datasets with each other. It warns you if it
detects observations (rows) or variables (columns) that do not agree across the two
datasets. When there are no disagreements, you can be confident that data entry is
reliable. To use PROC COMPARE, enter your data twice, once each into two separate
raw data files. Then use the two raw data files to create two SAS data sets. Then use
PROC COMPARE. The following example compares the two SAS data sets named
FRED and SAM.

PROC COMPARE BASE= fred COMPARE= sam ERROR;
ID subjctid ;

The BASE keyword defines the data set that SAS will use as a basis for comparison. The
keyword COMPARE defines the dataset which SAS will compare with the base dataset.
The ERROR keyword requests that SAS print an error message to the SASLOG file if it
discovers any differences when it compares the two data sets.

The ID statement tells SAS to compare rows (observations) in the data set by the
identifying variable, which here is named SUBJCTID. This variable must have a unique
value for each case.

PROC COMPARE features a number of options, many of which are designed to control
the amount and type of information displayed in the listing file. More information about
PROC COMPARE is available in the SAS Procedures Guide.

REMOVING DUPLICATE OBSERVATIONS FROM A DATASET USING SAS

Question:
How can I remove duplication observations from my SAS dataset?

Answer:
You can use PROC SORT with the NODUPLICATES option to remove unwanted
duplicate observations from your SAS dataset. The following sample code illustrates how
to use PROC SORT to do this.

DATA test;
INPUT id varone vartwo ;
CARDS;
123 45
2 35 98

2

3 83 45
123 45

PROC PRINT;
PROC SORT IN=test OUT=test2 NODUPLICATES;
BY _ALL_;
PROC PRINT DATA=test2;
RUN;
The _ALL_ keyword is required for SAS to correctly identify and remove the duplicate
observations.

If you want to remove duplicate records for specific BY variables only (as opposed to all
variables, shown above) substitute the keyword NODUPKEY for the
NODUPLICATES keyword in the example above. In addition, you should substitute a
specific BY variable (e.g., vartwo) for the_ ALL_ keyword used in the above example.

For more information, refer to the SAS Procedures Guide, Version 8, Third Edition.

SAS MISSING VALUES

Question:
How does SAS deal with missing data?

Answer:
Whenever SAS encounters an invalid or blank value in the file being read, the value is
defined as missing. In all subsequent processes and output, the value is represented as a
period (if the variable is numeric-valued) or is left blank (if the variable is character­
valued).

In DATA step programming, use a period to refer to missing numeric values. For
example, to recode missing values in the variable A to the value 99, use the following
statement:

IF a=. THEN a=99;
Use the MISSING statement to define certain characters to represent special missing
values for all numeric variables. The special missing values can be any ofthe 26 letters of
the alphabet, or an underscore. In the example below, the values 'a' and 'b' will be
interpreted as special missing values for every numeric variable.
MISSING a b;

For more information, refer to the SAS Language Guide: Rejerence,Version 8, First
Edition, Chapter 9, the MISSING section.

3

MEAN SUBSTITUTION FOR MISSING VALUES IN SAS

Question:
How can I replace missing values with a mean value in SAS? Is there an
easy way to do this for many variables?

Answer:

SAS has a procedure called PROC STANDARD that can be used to standardize some or
all of the variables in a SAS data set to a given mean and/or standard deviation and
produce a new SAS data set that contains the standardized values. In addition, there is a
REPLACE option that substitutes all missing values with the variable mean. If the
MEAN=mean-value option is also specified, missing values are set instead to the user­
specified mean-value.

The following SAS code demonstrates the use ofPROC STANDARD for mean
substitution.

DATA raw;
INPUTvl-v10;

CARDS;
11111.1111
222.2.2222
333333 .. 33
444 .. 44444
55555555 ..

PROC STANDARD DATA=raw OUT=stnd REPLACE PRINT;
VAR v1-v10;

RUN;

The following SAS code demonstrates another way of substituting mean values for
missing values.

DATA raw;
INPUT vl-v10;

CARDS;
11111.1111
222.2.2222
333333 .. 33
444 .. 44444
55555555 ..

4

PROC MEANS NO PRINT;
VAR v1-v10;
OUTPUT OUT=meandat(DROP= _TYPE __ FREQ_) MEAN=m1-m10;

RUN;

PROC PRINT DATA=meandat;
RUN;

DATA meansub (DROP=ml-m10 i);
IF _N_ = 1 THEN SET meandat;
SET raw;
ARRAY old(10) v1-v10;
ARRAY means(10) m1-m10;
DO i = 1 TO 10;

IF old(i) EQ . THEN old(i) = means(i);
END;

RUN;

In the first DATA step, the data set raw is created with 10 variables, v1 through v10.
Notice that there are one or more missing values (periods) for each observation in the
data records.

PROC MEANS is used to produce a new dataset meandat which has variables m1
through m10 holding the means for the variables v1 through v10. PROC PRINT is used
to verify this.

The second DATA step performs the substitution, creating a final data set called
meansub. It defines two arrays: old represents vl through vlO and means represents m1
through m10. A DO loop moves through the array variables, checking each value of
array old to see if it is missing. If it is missing, then the value is set to the corresponding
value from the array means; this is the mean substitution .

•

RECODING VARIABLE VALUES INTO MISSING VALUES IN SAS

Question:
I would like to recode numeric zeros in my SAS dataset into SAS system
missing values. How c;Jn I perform this operation?

Answer:
You can accomplish this task by using an IF-THEN statement in SAS. SAS uses the
period symbol ('.') as its missing value identifier.

5

The following example shows how to convert zeros to the SAS system missing value
code.

* SAS Program converts zero numeric values to SAS system missing values ;

DATA;
INFILE CARDS ;
INPUT id a b c ;
IFa=OTHENa=.;
IF b = 0 THEN b = . ;

CARDS;
1234
2045
3406

PROC PRINT;
TITLE ' Check for program accuracy' ;
RUN;

* End sample program ;

For more information on recoding numeric values into missing data values, please
consult the SAS Language Guide, Version 8, First Edition.

READING MISSING DATA USING SAS

Question:
The option MISSOVER does not work when the missing values are not at
the end of the-observation, correct?

To read this, for example:
546 8456

111

I did:

5555

OPTIONS linesize=BO REPLACE NODATE;

FILENAME indata '/home/grad/veronica/LESSONS/SAS/miss2.txt';

DATA NEW1;
INFILE indata missover;
INPUT @1 year @9 foodcons @17 prretail @25 dispinc;

6

RUN ;

PROC PRINT;
RUN;

and got:

The SAS System
1

OBS YEAR FOODCONS PRRETAIL DISPINC

1
2

546
111

8456
111

8456
5555 5555

Is there a way for SAS to interpret empty positions in the middle of a record as missing
values?

Answer:
One way to fix the problem is to explicitly defme tbe column width of each variable
using SAS formatting input.

The modified program looks like this:

OPTIONS LS=80 REPLACE NODATE ;

DATA newl
INFILE CARDS MISSOVER ;

INPUT @1 (year) (3.) @9 (foodcons) (3.) @ 17 (pretail) (4.) @25
(dispinc) (4.)

CARDS
546

111

RUN

PROC PRINT
RUN ;

8456
5555

The (3.) and (4.) in the INPUT statement refer to tbe column width of each variable in
question: 3 columns and 4 columns, respectively. Note that if you had data with columns
appearing behind a decimal point, such as a GPA of 3.46, then your column specification
would be 4.2: 4 total columns, including the decimal point, with two of those four
columns consisting of values behind (to the right of) the decimal point.

The program results in the following output:

The SAS System 1

OBS YEAR FOODCONS PRETAIL DISPINC

7

1
2

546
111

8456
5555

REPLACING MISSING DATA FROM A SECOND FILE

Question:
I have one data file with some missing values in it. I want to replace those
with values from a second data file, but only replace those with matching
observation values in the second data file.

Answer:
The following SAS program will replace missing data in dataset one with a matching
observation from dataset two.

DATA one
INPUT x y z $

CARDS ;
1 2 a1
1 3 b1
1 c1
2 5 d1
4 6 e1

DATA two ;
N+l ;
INPUT y z2 $
CARDS
2 a1
3 b1
4 c1
5 d1
6 e1

DATA both
SET one ;

N = . ;
IF y=. THEN DO WHILE (z2 NE z)

SET two
END;

DROP z2 ;
PROC PRINT
RUN ;

8

IDENTIFYING NON MATCHES IN A SAS MATCH MERGE

Question:
I am match-merging two SAS data sets. I would like to be able to identify,
remove, and print out any cases that don't get a match. How can I do this?

Answer:
Use the IN= option in the MERGE statement to identify the observations that have data
from both data sets. The following code demonstrates this:

DATA one
INPUT x y z

CARDS
2 2 3
4 5 6
7 8 9

RUN;

DATA two
INPUT x y z

CARDS
1 2 3
4 5 6
7 8 9

RUN;

PROC SORT DATA=one;
BY X ;

RUN;

PROC SORT DATA=two;
BY X ;

RUN;

DATA mergdset missgset ;
MERGE one {IN = fromone) two {IN = fromtwo)
BY X ;

IF fromone = 1 AND fromtwo = 1 THEN OUTPUT mergdset
ELSE OUTPUT missgset ;

RUN;

PROC PRINT DATA = mergdset ;
TITLE ' Matched and Merged Observations'

PROC PRINT DATA = missgset ;
TITLE Unmatched Observations'

RUN ;

9

In this example, the two SAS data sets ONE and TWO are sorted and merged by the
variable X. The IN= options creates two new variables that will equal I if the
corresponding data set contributed data to the current observation, or 0 otherwise. The
IF /ELSE statements then use these variables to output any unmatched observations to the
SAS data set MISSGSET, and all other observations to the data set MERGDSET.

More information about the IN= option is available in SAS Language: Reference,
Version 8, First Edition.

SUMMING VARIABLES WITH MISSING DATA IN SAS

Question:
I have a number of variables I need to add together using SAS. Some of
them have missing data. What is the best way for me to add them together
given that I have missing data?

Answer:
There are two general approaches you can take summing variables in SAS.

I. The direct adding method.
With this method, you compute a new variable as a straight sum of the current variables
you wish to add.

Newvar = Oldvarl + Oldvar2 + Oldvar3 ;
In this example, Newvar is the sum of Oldvarl + Oldvar2 + Oldvar3. If Oldvarl or
Oldvar2 or Oldvar3 had missing data for a given case, then the value ofNewvar for that
case would also be missing. In other words, if any of the variables to be summed have
missing data, the new variable will also have missing data.

2. The function method.
With the function method, you use the SAS SUM (OF operator to add up a number of
variables. The advantage of this method is that the syntax is much less laborious to type,
especially for large numbers of variables.

Newvar =SUM (OF Oldvarl-Oldvar3);
Unfortunately, with this method any variable to be summed which has a missing value is
treated as zero by SAS. This means, for example, that if Oldvar I had a value of 4 and
Oldvar2 was missing and Oldvar3 had a value of 3, the value ofNewvar would be 7
when the SUM (OF function is used. By contrast, the value ofNewvar would be missing
under method (I) described previously (where you add the variables together using a plus
sign).

10

If you have both a large number of variables to sum and missing data, what can you do?
One solution (provided by Karl Wuensch over the Internet) is use the NMISS (OF
function in conjunction with the SUM (OF function, like so:

IF NMISS(OF Oldvarl-Oldvar3) > 0 then Newvar = . ;
ELSE Newvar =SUM(OF Oldvarl-Oidvar3) ;
This code first calculates the number of missing values across the variables Oldvarl
through Oldvar3. If SAS finds any missing data,
it sets the value ofNewvar to be missing. Otherwise, the value ofNewvar is set to be the
sum of the Oldvarl through Oldvar3 values which have non-missing cases.

EXTRACTING CASES WITH A GIVEN STRING FROM SAS

Question:
I am trying to extract data on a certain drug from a very large database. A
frequency tabulation reveals that this drug is coded/spelled in a variety of
ways. All of the codes, however, contain the word BACTRIM --e.g.
BACTRIM D.S. or BACTRIM D or DS1/ BACTRIM.

Is there an efficient way to select all of these values with one subsetting if statement
without having to write out each value? It is written a total of 50 ways. Can I use a
substring function? If so, how? Could you provide me with a bit of sample code for doing
this?

Answer:
The sample code shown below should help you to configure your SAS program to extract
only the records containing "BACTRIM".

DATA one ;
LENGTH drug $20 ;

INFILE CARDS ;
INPUT DRUG &

CARDS ;
BACTRIM D.S.
BACTRIM D
DSl/ BACTRIM
NOT VALID
ANOTHER NOT VALID

RUN ;

DATA two
SET one ;
flag = 'BACTRIM';
new_drug = INDEX(drug,flag);

RUN ;

PROC PRINT DATA = two ;
TITLE 'All records';

RUN ;

11

DATA three ;
SET two ;
IF new_drug NE 0

RUN ;

PROC PRINT DATA = three ;
TITLE 'Reduced database•;

RUN ;

The first DATA step reads in the sample records you sent in your E-mail message, plus a
couple of additional records that do not meet the BACTRIM criterion.

The second DATA step gets the information from the first DATA step using the SET
statement. Then we create a new variable called "flag". Flag is the string we use to limit
the records for inclusion. In this case it is "BACTRIM". Now we create another new
variable called "new_ drug". New_ drug is actually a numeric variable. SAS has a function
called INDEX that will return the location number of the first character in the string. The
first variable required by INDEX is the variable of interest. In this case that is the
variable "drug". The second variable required by INDEX is the text string to search for;
in this case that is the variable "flag".

The third OAT A step gets the information from the second DATA step and limits the
cases chosen for inclusion in the third DATA step to only those that have a new_ drug
number not equal to zero. The INDEX function returns a zero value for new_ drug if it
cannot find the string "BACTRIM" in the subject's drug variable, so we want to include
only cases that have a non-zero value for new_ drug.

It is possible and even desirable to compress this program into a single OAT A step. For
purposes of illustration we show each step in clear and distinct parts.

USING AN ARRAY fN SAS TO DETECT MISSfNG VA LUES

Question:
How do I exclude observations from my PROC FREQ analysis when a value
is missing from a list of variables?

Answer:
In the SAS DATA step you can create a new variable ("miss" in the example below), that
is set equal to I when a variable has a missing value, 0 otherwise. Use the ARRAY
statement and a DO loop to check for missing values across a list of variables, syntax is:

DATA one ;
INFILE xxx;
INPUT a b c d e;

12

miss=O;
ARRAY vv(5) a b c d e
DO i=l TO 5

IF vv(i)=. THEN DO;
miss=l
i=5;

END;
END;

RUN;

PROC FREQ;
WHERE miss =0;
TABLES a b c d e

RUN ;

Here the array "vv" has 5 elements (a,b,c,d,e) and the loop "i" is likewise set to 5. For
each observation the loop iterates 5 times checking for missing values across the list of 5
variables. When a missing value is encountered the variable "miss" is set to I and the
loop stopped for that observation. "Miss" was initially set to zero, and it is only changed
if an observation has missing data on any of the five variables. The PROC FREQ then
uses the WHERE statement to restrict processing to observations having "miss" set to
zero.

For additional information, consult the SAS Language Guide Version 8 First Edition in
the Language Statement section on arrays.

ONE-TO-MANY DATASET MERGING WITH SAS

Question:
I need to merge two datasets in SAS so that the variables in one dataset are
included in with the other dataset. In one dataset, observations represent
companies' year-end reported data. In the other dataset, observations
represent monthly activity for the year for each company in the first
dataset. Thus, each observation in the first dataset wlll be merged with 12
observations in the second. How can I get SAS to do this kind of merge?

Answer:
To do this you must have some common variable in each dataset that uniquely identifies
each company. Then you would use PROC SORT to sort the observations in each of your
two SAS datasets by this "id" variable. You would then use the MERGE statement to
interleave the two datasets together into one SAS dataset. For example:

PROC SORT DATA=dsetone;
BY idvar;

RUN;

13

PROC SORT DATA=dsettwo;
BY idvar;

RUN;

DATA new;
MERGE dsettwo dsetone ;
BY idvar;

RUN;

where "dsetone" is your larger SAS dataset (e.g., the SAS dataset with 12 observations
for each level of the id variable which you merge by) and "dsettwo" is the smaller SAS
dataset containing only one "yearly" value for each level of the id variable which you
merge by. Finally, "idvar" is the id variable by which the other two SAS datasets were
sorted and which the MERGE statement now uses to merge the former datasets together
(e.g., "year").

If you have more questions about the MERGE statement, please read about it in the SAS
Language Guide, Reference, Version 8, First Edition.

USING THE SAS KEEP & DROP STATEMENTS

Question:
I'm using multiple SAS datasets in the same program, and I only need to
keep a few of all of the variables in the last part of my program. Is there an
easy way to keep only the variables I need to use? Should I use KEEP or
DROP statements?

Answer:
One way is to use either the KEEP or DROP statements in your DATA steps. Which
statement you should use will depend on how many of the variables in your SAS dataset
you wish to keep. If you only wish to keep a few of many variables, then use the KEEP
statement. If you want to drop only a few variables, use the DROP statement. The syntax
of the two statements is very similiar (and simple).

The syntax for the KEEP statement is:

KEEP varl var2 varN ;

Here is an example of using the KEEP statement in a SAS program:

DATA one;
INFILE CARDS ;
INPUT ssn age sex weight ;
CARDS;

14

445768976 23 m 129
487593453 35 f 112
442345213 26m 198

DATA two;
SET one;
KEEP age weight ;
RUN;

Here the SAS user has read in some data into dataset ONE. Then a second DATA step
creates dataset TWO. The KEEP statement is used so that only the variables AGE and
WEIGHT are included in the dataset TWO.

Alternatively, the researcher could have accomplished the same goal by replacing the
KEEP statement with a DROP statement and a new variable list, indicating which
variables in the first SAS dataset should be dropped from the new SAS dataset.

DROP ssn sex ;

For more information about the KEEP and DROP statements, consult the SAS
Language: Reference, Version 8, First Edition.

COMBINING MULTIPLE LINES INTO ONE USING SAS

Question:
I want to combine multiple tines (rows) of data into one line (a single row)
of data in a SAS data set. How can I do this?

Answer:
Here is some code-to combine multiple lines into one line. It uses SAS's ARRAY
function.

* Begin sample program ;

DATA full; *this step just creates the full dataset;
INPUT id $stage$ x y @@;

CARDS;
jan z 1 1 jan x 2 2 jan d 3 3 jan e 4 4 joe a 11 1 joe b 22 2 joe r 33
3
joe z 44 1 pam b 2 1 pam r 2 2 pam i 2 1 pam s 2 2

RUN;

PROC PRINT DATA=full;
RUN;

15

DATA redone;
ARRAY u(4) newvarl-newvar4;

DO i = 1 TO 4;

END;
DROP i;

RUN;

SET full;
u(i) = x;

PROC PRINT DATA=redone;
RUN;

* End sample program

Output:

OBS ID STAGE X y

1 jan z 1 1
2 jan X 2 2
3 jan d 3 3
4 jan e 4 4
5 joe a 11 1
6 joe b 22 2
7 joe r 33 3
8 joe z 44 1
9 pam b 2 1
10 pam r 2 2
11 pam i 2 1
12 pam s 2 2

OBS NEWVAR1 NEWVAR2 NEWVAR3 NEWVAR4

1
2
3

1
11
2

2
22
2

FORMATTING SAS DATA

Question:

3
33
2

4
44
2

ID

jan
joe
pam

STAGE

e
z
s

X y

4 4
44 1
2 2

How do I get sas to take the number: 0001 and to output it EXACTLY as it
looks without stripping off the leftmost zeros?

Answer:
If you want SAS to be able to use this value as a number, use the Zw.d format, where
"w" is the total width of the output field to be used including any decimal point, and "d"
is the number of decimal places. This format will right justify the data in the field and pad
any left side blanks with zeros.

For example:

16

DATA showform;
INPUT x;
FORMAT x ZS.;

CARDS;
00001
2
000003

RUN;

PROC PRINT;
RUN;

Since the "w" value specified was 5, the output is printed with as many leading zeros as
are required to fill a five character wide output field. Thus the first value is printed
exactly as it is input, the second value is printed with four new leading zeros, the third
value has one less leading zero.

If you don't need this value treated as a number, input it as a character value -- in this case
whatever form it has in input is stored for output. However, you will not be able to use
this value in any numeric procedures or calculations.

For example:

DATA showform;
INPUT x $;

CARDS;
00001

RUN;

PROC PRINT;
RUN;

For more information, please refer to the SAS LANGUAGE manual, Reference, Version
8, First Edition. Chapter 14 covers output formats.

CREATING A SAS DATA SET FROM AN ASCII FILE

Question:
How can I create a SAS data set from an ascii (raw data or text) fife?

17

Answer:
In addition to the SAS import wizard (File, Import), ascii data files can be read into SAS
using an INFILE statement within a data step.

The following steps should enable you to create a permanent SAS data set from most
ascii files:

1. Look at the ascii data file in a text editor such as WordPad to determine the data
layout and note what character separates the fields (e.g., blank, tab, comma, tilde).

2. Modify the following example SAS code to read in your ascii data file. Note that
the ascii file may be open or closed while you read the data into SAS. The most
recently saved version is what SAS will read.

Example 1 (Windows; fixed column data layout)

Assume the data consist of five observations of three variables saved in a text file called
mydatal.txt in the c:\files\data folder. The data might look like this:

idOOl Dept of Advertising
id002 Dept of Communications
id003 Dept of Ecology
id004 Dept of Geology
id005 Dept of Health
Submit the following SAS code to read the text file:

FILENAME textl "c:\files\data\mydatal.txt";

DATA mydata1;
INFILE textl;
INPUT var1 $ 1-5 var2 $ 10-31 var3 36-37;

RUN;

20
25
15
23
40

This code will read a fixed column ascii data file with two character variables (varl,
which is contained in columns I through 5, and var2, which is contained in columns 10
through 31) and one numeric variable, var3, which is contained in columns 36 through
37. A temporary SAS data set (mydatal.sd2) is created and stored in the WORK
directory until the SAS session is terminated.

Example 2 (Windows; comma-delimited data layout)

Assume the data consist of five observations of three variables saved in a text file called
mydata2.txt in the c:\files\data folder. The data might look like this:

18

idOOl,Dept of Advertising,20
id002,Dept of Communications,25
id003,Dept of Ecology,lS
id004,Dept of Geology,23
idOOS,Dept of Health,40
Submit the following SAS code to read the text file:

FILENAME text2 "c:\files\data\mydata2.txt";

DATA mydata2;
length varl $5 var2 $30;
INFILE text2 dim=',';
INPUT varl var2 var3;

RUN;

This code will read an ascii data file with two character variables (varl and var2, which
have maximum lengths of 5 and 30, respectively) and one numeric variable, var3. The
variables are separated by commas in the ascii file. A temporary SAS data set
(mydata2.sd2) is created and stored in the WORK directory until the SAS session is
terminated.

Guidelines for reading hierarchical data are located in SAS FAO #34.

For more complicated file layouts, refer to the INFILE options described below.

Infile Options

The INFILE statement supports various options that allow you to read ascii files with
greater flexibility. Some helpful options are described below:

dim=',' -- indicates that commas are used to separate variables within the text file.
Another common delimiter is the tab. It is denoted by dlm='09'x. The default delimiter
is a blank space.

dsd -- allows a delimiter, such as a comma, to be read as a character (instead of a
delimiter) within quoted strings; also allows two consecutive delimiters to indicate a
missing value. This is an appropriate option for data generated by most database
software programs.

missover -- prevents SAS from going to a new input line if it does not find values in the
curent line for all variables. This is an appropriate option when the data in the ascii file
consist of one record per line.

notab -- allows embedded blanks within a character string.

19

firstobs=n -- indicates which line in the ascii file contains the first record to be read by
SAS. If the first record(s) contains header information such as variable names, then set
firstobs=n where n is the record number where the data actually begin.

obs=n -- indicates which line in the ascii file contains the last record to be read by SAS.
This is a good option to use for testing your program. Once your program is running
correctly with the first n observations, you can increase the value of obs to continue
testing your program or remove the obs=n option altogether and read all of the records
from the ascii file.

A typical INFILE statement for reading tab-delimited data located in rows 2 through 20
of a text file would be:

INFILE textl dlm='09'x notab dsd missover firstobs=2 obs=20;

For more information on the INFILE statement, see SAS Online Help by typing INFILE
or INFILE I under the Find tab (V6.12 under Windows).

FILE RELATIONSHIPS IN SAS

Qnestion:
What are the different files used and produced by SAS and what are they all
for?

Answer:
When running SAS in noninteractive mode, (that is when you issue the SAS command
followed by an input file name), there are five different files that you are likely to be
usmg.

These are:

I. text data files
2. command files
3. SAS data set files
4. SAS listing files
5. SAS log files

A text data file is a document that contains your data in text form. You entered the data
from some text editor into this file. Note that it is possible to enter data in a command
file, so separate data files are not necessary. However, since data can be read in many
different ways, it is usually more efficient to create data files separate from command
files.

20

A command file is a document that contains the SAS commands that will read the data in
the text data file, plus commands that will produce some sort of output from the data.
You must create the command file using a text editor program, just as with your text data
file. As mentioned, the command file can also contain the data.

A SAS data set file is created when a command file contains a DATA step. SAS data set
files can be created so that they exist only as long as SAS is rurming your current
noninteractive submission, or they can be created to be saved and used again during a
different submission. Note that SAS data set files cannot be edited by text editor
programs.

The only way to see the data in a SAS data set file is to use the file in SAS, (or some
other program that can read SAS data set files).

SAS log files are produced as SAS runs the command file. When the command file is
read, SAS checks each statement and tries to execute it. If it can, the statement is sent to
the SAS log file with either no comment attached, or a brief note describing the execution
process. If the statement can be executed, but problems occurred during execution, the
statement is sent to the SAS log file with a warning statement describing the problem. If
the statement cannot be executed, SAS sends the statement to the log file along with an
error message describing why the command could not be used. Examination of log files
following submission of command files is the best way to find mistakes in a comand file.

Listing files are produced when SAS executes a command from the command file that
creates output. Any command that creates output sends that output to the listing file. The
listing file is the file with the information you were trying to produce with the command
file.

There are other files used and produced by SAS. For more information, see SAS
Language: Reference, Version 8, First Edition. In particular, see Chapter 2: TheDA TA
step, and Chapter 5: SAS Output.

•

21

BIBLIOGRAPHY OF USEFUL WEB LINKS

SAS Language' Reference, Version 8, First Edition
http://v8doc.sas.com/sod register.html

University of Texas Support for Statistical Packages (including SAS)
http://ssc.utexas.edu/consulting/answers/fags.html

Frequently Asked Questions about SAS Software
http:/ /www.hollandnumerics.co. uk/sasfag/SASF AQ.HTM

SAS Tips
http://members.tripod.com/-schick/sas tips.html

•

22

